期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Alkali/alkaline-earth metal-modified MnO_(x) supported on three-dimensionally ordered macroporous–mesoporous Ti_(x)Si+(1-x)O_(2) catalysts:Preparation and catalytic performance for soot combustion 被引量:2
1
作者 Chao Peng Di Yu +9 位作者 Chunlei Zhang Maozhong Chen LanyiWang Xuehua Yu Xiaoqiang Fan Zhen Zhao Kai Cheng Yongsheng Chen YuechangWei Jian Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第3期82-94,共13页
The performance of catalysts used in after-treatment systems is the key factor for the removal of diesel soot,which is an important component of atmosphericfine particle emissions.Herein,three-dimensionally ordered ma... The performance of catalysts used in after-treatment systems is the key factor for the removal of diesel soot,which is an important component of atmosphericfine particle emissions.Herein,three-dimensionally ordered macroporous–mesoporous Ti_(x)Si+(1-x)O_(2)(3DOM-m Ti_(x)Si+(1-x)O_(2)) and its supported MnO_(x)catalysts doped with different alkali/alkaline-earth metals (AMnO_(x)/3 DOM-m Ti_(0.7)Si_(0.3)O_(2)(A:Li,Na,K,Ru,Cs,Mg,Ca,Sr,Ba)) were prepared by mesoporous template (P123)-assisted colloidal crystal template (CCT) and incipient wetness impregnation methods,respectively.Physicochemical characterizations of the catalysts were performed using scanning electron microscopy,X-ray diffraction,N_(2)adsorption–desorption,H_(2)temperature-programmed reduction,O_(2)temperature-programmed desorption,NO temperature-programmed oxidation,and Raman spectroscopy techniques;then,we evaluated their catalytic performances for the removal of diesel soot particles.The results show that the 3DOM-m Ti_(0.7)Si_(0.3)O_(2)supports exhibited a well-defined 3DOM-m nanostructure,and AMnO_(x)nanoparticles with 10–50 nm were evenly dispersed on the inner walls of the uniform macropores.In addition,the as-prepared catalysts exhibited good catalytic performance for soot combustion.Among the prepared catalysts,CsMnO_(x)/3DOM-m Ti_(0.7)Si_(0.3)O_(2)had the highest catalytic activity for soot combustion,with T10,T50,and T90(the temperatures corresponding to soot conversion rates of 10%,50%,and 90%) values of 285,355,and 393℃,respectively.The high catalytic activity of the CsMnO_(x)/3 DOM-m Ti_(0.7)Si_(0.3)O_(2)catalysts was attributed to their excellent low-temperature reducibility and homogeneous macroporous–mesoporous structure,as well as to the synergistic effects between Cs and Mn species and between CsMnO_(x)and the Ti_(0.7)Si_(0.3)O_(2)support. 展开更多
关键词 Three-dimensionally ordered macroporous-mesoporous Ti_(0.7)Si_(0.3)O_(2) Alkali/alkaline-earth metals MnO_(x) CATALYSTS Preparation Soot combustion
原文传递
Bandgap evolution of Mg_(3)N_(2) under pressure:Experimental and theoretical studies
2
作者 吴刚 王璐 +3 位作者 包括 李贤丽 王升 徐春红 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期602-606,共5页
Wide bandgap semiconductors are crucially significant for optoelectronic and thermoelectric device applications.Metal nitride is a class of semiconductor material with great potential.Under high pressure,the bandgap o... Wide bandgap semiconductors are crucially significant for optoelectronic and thermoelectric device applications.Metal nitride is a class of semiconductor material with great potential.Under high pressure,the bandgap of magnesium nitride was predicted to grow.Raman spectra,ultra-violet-visible(UV-Vis)absorption spectra,and first-principles calculations were employed in this study to analyze the bandgap evolution of Mg_(3)N_(2).The widening of the bandgap has been first detected experimentally,with the gap increasing from 2.05 eV at 3 GPa to 2.88 eV at 47 GPa.According to the calculation results,the enhanced covalent component is responsible for the bandgap widening. 展开更多
关键词 high pressure electronic structures first-principles calculations alkaline-earth metal nitride
原文传递
A New Tubular Borate Built by[B_(14)O_(24)(OH)_(6)]^(12-) Cluster Units
3
作者 SUN Xiao-Shuang QIN Dan +1 位作者 LI Xu-Yan YANG Guo-Yu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2022年第1期123-127,共5页
Anew mixed alkali and alkaline-earth metal borate Na4Ca2[B14O22(OH)6]·2H2O(1) has been made under a mild solvothermal condition and characterized by single-crystal X-ray diffraction, infrared(IR) spectroscopy, UV... Anew mixed alkali and alkaline-earth metal borate Na4Ca2[B14O22(OH)6]·2H2O(1) has been made under a mild solvothermal condition and characterized by single-crystal X-ray diffraction, infrared(IR) spectroscopy, UV-Vis diffuse reflectance spectroscopy, powder X-ray diffraction and thermogravimetric analysis, respectively. Compound 1 features a 1D tube based on[B14O24(OH)6]12-({B14}-1) oxo-boron clusters. Such a tube built by {B14}-1 units has been discovered for the first time in borate system. These tubes are arranged orderly to generate 2D layers and a further 3D supramolecular network through hydrogen bond interactions. UV-Vis diffuse reflectance spectrum reveals that compound 1 is a wide band-gap semiconductor and has potential application in UV region. 展开更多
关键词 Alkali and alkaline-earth metal BORATE Tube Solvothermal synthesis CLUSTER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部