A decision support model with the stochastic objective function measuring the benefit contributions of projects and stochastic resource constraint and its decision making analysis procedure with the case study are pre...A decision support model with the stochastic objective function measuring the benefit contributions of projects and stochastic resource constraint and its decision making analysis procedure with the case study are presented for selecting R&D projects, in which the uncertainty in project evaluation and selection, the technical or outcome, cost or resource and benefit or payoff interrelationships among projects, and the experience and knowledge of the R&D manager can be considered.展开更多
This paper generalizes the classic resource allocation problem to the resource planning and allocation problem, in which the resource itself is a decision variable and the cost of each activity is uncertain when the r...This paper generalizes the classic resource allocation problem to the resource planning and allocation problem, in which the resource itself is a decision variable and the cost of each activity is uncertain when the resource is determined. The authors formulate this problem as a two-stage stochastic programming. The authors first propose an efficient algorithm for the case with finite states. Then, a sudgradient method is proposed for the general case and it is shown that the simple algorithm for the unique state case can be used to compute the subgradient of the objective function. Numerical experiments are conducted to show the effectiveness of the model.展开更多
In this paper, on-road trajectory planning is solved by introducing intelligent computing budget allocation(ICBA) into a candidate-curve-based planning algorithm, namely, ordinal-optimization-based differential evolut...In this paper, on-road trajectory planning is solved by introducing intelligent computing budget allocation(ICBA) into a candidate-curve-based planning algorithm, namely, ordinal-optimization-based differential evolution(OODE). The proposed algorithm is named IOODE with ‘I' representing ICBA. OODE plans the trajectory in two parts: trajectory curve and acceleration profile. The best trajectory curve is picked from a set of candidate curves, where each curve is evaluated by solving a subproblem with the differential evolution(DE) algorithm. The more iterations DE performs, the more accurate the evaluation will become. Thus, we intelligently allocate the iterations to individual curves so as to reduce the total number of iterations performed. Meanwhile, the selected best curve is ensured to be one of the truly top curves with a high enough probability. Simulation results show that IOODE is 20% faster than OODE while maintaining the same performance in terms of solution quality. The computing budget allocation framework presented in this paper can also be used to enhance the efficiency of other candidate-curve-based planning methods.展开更多
文摘A decision support model with the stochastic objective function measuring the benefit contributions of projects and stochastic resource constraint and its decision making analysis procedure with the case study are presented for selecting R&D projects, in which the uncertainty in project evaluation and selection, the technical or outcome, cost or resource and benefit or payoff interrelationships among projects, and the experience and knowledge of the R&D manager can be considered.
基金supported by in part by the National Natural Science Foundation of China under Grant Nos.71390334 and 71132008the MOE Project of Key Research Institute of Humanities and Social Sciences at Universities under Grant No.11JJD630004Program for New Century Excellent Talents in University under Grant No.NCET-13-0660
文摘This paper generalizes the classic resource allocation problem to the resource planning and allocation problem, in which the resource itself is a decision variable and the cost of each activity is uncertain when the resource is determined. The authors formulate this problem as a two-stage stochastic programming. The authors first propose an efficient algorithm for the case with finite states. Then, a sudgradient method is proposed for the general case and it is shown that the simple algorithm for the unique state case can be used to compute the subgradient of the objective function. Numerical experiments are conducted to show the effectiveness of the model.
基金supported by the National Natural Science Foundation of China(No.61273039)
文摘In this paper, on-road trajectory planning is solved by introducing intelligent computing budget allocation(ICBA) into a candidate-curve-based planning algorithm, namely, ordinal-optimization-based differential evolution(OODE). The proposed algorithm is named IOODE with ‘I' representing ICBA. OODE plans the trajectory in two parts: trajectory curve and acceleration profile. The best trajectory curve is picked from a set of candidate curves, where each curve is evaluated by solving a subproblem with the differential evolution(DE) algorithm. The more iterations DE performs, the more accurate the evaluation will become. Thus, we intelligently allocate the iterations to individual curves so as to reduce the total number of iterations performed. Meanwhile, the selected best curve is ensured to be one of the truly top curves with a high enough probability. Simulation results show that IOODE is 20% faster than OODE while maintaining the same performance in terms of solution quality. The computing budget allocation framework presented in this paper can also be used to enhance the efficiency of other candidate-curve-based planning methods.