期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Off-Design Performance Analysis of Axial Flow Fan in Helicopter
1
作者 李明 高红霞 +1 位作者 余建祖 迟蓬涛 《Journal of Donghua University(English Edition)》 EI CAS 2011年第1期23-30,共8页
A theoretical calculation method of off-design performance is developed for an axial flow fan of oil cooling system in helicopter,including calculation of aerodynamic parameters and performance parameters.When calcula... A theoretical calculation method of off-design performance is developed for an axial flow fan of oil cooling system in helicopter,including calculation of aerodynamic parameters and performance parameters.When calculating inlet shock loss,the shock loss coefficient is obtained by comparing results of theoretical calculation,experimental and numerical calculation.The theoretical results and numerical results show that all air velocity components increase from hub to shroud in main flow area at rated condition.Tip leakage vortex moves downstream as flow rate increases.When flow rate decreases,Re decreases,and boundary layer thickness from hub to shroud area all increases gradually.Tip leakage vortex moves upstream,and secondary loss increases.Low speed area in the passage is widened along with high speed area moving to hub area,influenced by boundary layer separation.Consequently wake area and jet area at fan outlet are both larger than rated condition.Therefore optimization design for off-design performance of the fan is required on aerodynamic parameters influencing fan loss.A reliable method is supplied for estimating altitude performance of lubricating system in helicopter. 展开更多
关键词 axial flow fan off-design performance altitude performance shock loss coefficient boundary layer separation BACKFLOW
下载PDF
Determination of berberine in Phellodendron amurense from different sites of Changbai Mountain 被引量:2
2
作者 Lin Ma Jun-qing Li Yuan-dong Hu 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第1期201-207,共7页
Phellodendron amurense has been used for many years as a medical plant in traditional Chinese medicine and has shown great prospect in recent clinical trials for future applications. Berberine is an essential active c... Phellodendron amurense has been used for many years as a medical plant in traditional Chinese medicine and has shown great prospect in recent clinical trials for future applications. Berberine is an essential active compound contained in P. amurense. Our objective in this study was to quantify the content of berberine in P.amurense from sites at different elevations on Changbai Mountain. We collected samples of P. amurense from five different elevations on Changbai Mountain. Berberine in samples was extracted by ultrahigh pressure extraction(UPE). And the quantity was measured by high performance liquid chromatography(HPLC). First, the optimal HPLC conditions for berberine were identified with satisfactory precision(relative standard deviation, R SD/5.6 %), good accuracy(relative error, R E/ 3.6 %) and good linear relation(R2= 0.9998) in the range of 6.576–328.8 mg L-1. Second, the combination of UPE and HPLC methods in quantitative analysis of berberine showed high repeatability(R SD= 3.28 %), reproducibility(R SD= 4.72 %),stability(R SD/ 1.27 %) and good recovery(99.54 %) for real plant materials. Samples from Heilongjiang Province at the lowest elevation contained the highest amount of berberine.Similarly, the lowest amount of berberine was recorded in samples from Changbai Forest Bureau of Jilin Province collected at the highest elevation in this paper. The proposed UPE–HPLC method is simple, reliable and low-cost for quantitative analysis of berberine. Content of berberine in P.amurense varied significantly by site on Changbai Mountain. 展开更多
关键词 Phellodendron amurense Berberine Changbai Mountain altitudes Ultrahigh pressure extraction High performance liquid chromatography
下载PDF
Gas exchange optimization in aircraft engines using sustainable aviation fuel:A design of experiment and genetic algorithm approach
3
作者 Zheng Xu Jinze Pei +12 位作者 Shuiting Ding Longfei Chen Shuai Zhao Xiaowei Shen Kun Zhu Longtao Shao Zhiming Zhong Huansong Yan Farong Du Xueyu Li Pengfei Yang Shenghui Zhong Yu Zhou 《Energy and AI》 EI 2024年第3期261-280,共20页
The poppet valves two-stroke(PV2S)aircraft engine fueled with sustainable aviation fuel is a promising option for general aviation and unmanned aerial vehicle propulsion due to its high power-to-weight ratio,uniform t... The poppet valves two-stroke(PV2S)aircraft engine fueled with sustainable aviation fuel is a promising option for general aviation and unmanned aerial vehicle propulsion due to its high power-to-weight ratio,uniform torque output,and flexible valve timings.However,its high-altitude gas exchange performance remains unexplored,presenting new opportunities for optimization through artificial intelligence(AI)technology.This study uses validated 1D+3D models to evaluate the high-altitude gas exchange performance of PV2S aircraft engines.The valve timings of the PV2S engine exhibit considerable flexibility,thus the Latin hypercube design of experiments(DoE)methodology is employed to fit a response surface model.A genetic algorithm(GA)is applied to iteratively optimize valve timings for varying altitudes.The optimization process reveals that increasing the intake duration while decreasing the exhaust duration and valve overlap angles can significantly enhance high-altitude gas exchange performance.The optimal valve overlap angle emerged as 93°CA at sea level and 82°CA at 4000 m altitude.The effects of operating parameters,including engine speed,load,and exhaust back pressure,on the gas exchange process at varying altitudes are further investigated.The higher engine speed increases trapping efficiency but decreases the delivery ratio and charging efficiency at various altitudes.This effect is especially pronounced at elevated altitudes.The increase in exhaust back pressure will significantly reduce the delivery ratio and increase the trapping efficiency.This study demonstrates that integrating DoE with AI algorithms can enhance the high-altitude performance of aircraft engines,serving as a valuable reference for further optimization efforts. 展开更多
关键词 Poppet valves two-stroke Design of experiment Genetic algorithm optimization Heavy fuel aircraft engine High altitude gas exchange performance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部