After brass is coated with tin, heat treatment makes the coating metal Sn and the substrate metallic elements Cu and Zn diffuse with each other. This causes the coating composition to be changed and the interface to b...After brass is coated with tin, heat treatment makes the coating metal Sn and the substrate metallic elements Cu and Zn diffuse with each other. This causes the coating composition to be changed and the interface to be strengthened. The diffusion coating with a multiphase structure formed by this process has excellent properties of antifriction and wear resistance. With the aid of scanning electron microscopy, electronic probe microanalysis and X ray diffraction, the mechanism of the properties is discussed.展开更多
The antifrictional polymeric compounds on the base of epoxy binder are received. There are tribotechnical, mechanical, physico-chemical and thermal compounds properties have been researched. The production methods of ...The antifrictional polymeric compounds on the base of epoxy binder are received. There are tribotechnical, mechanical, physico-chemical and thermal compounds properties have been researched. The production methods of epoxidographitofluoroplastic materials, rienforced by clothes from tribotechnical goods are proposed.展开更多
To improve the tribological behavior of biodiesel soot(BDS) in liquid paraffin(LP), the order of biodiesel soot was increased through thermally oxidized treatment at 500 ℃, and the oil solubility was then improved th...To improve the tribological behavior of biodiesel soot(BDS) in liquid paraffin(LP), the order of biodiesel soot was increased through thermally oxidized treatment at 500 ℃, and the oil solubility was then improved through a modification using oleylamine(OLA). The BDS and thermally oxidized oleylamine-modified BDS(T-BDS-OLA)were characterized through various methods including the use of TG, FETEM, Raman spectroscopy, FTIR, and a zeta potentiometer. The tribological properties and mechanisms of the BDS before and after the thermally oxidized treatment modification were investigated using a ball-on-disc reciprocating tribometer, FESEM, 3 D laser-scanning microscopy, and Raman spectroscopy. The results showed that T-BDS-OLA has a higher degree of order than the BDS, with an onion-like microstructure. BDS and T-BDS-OLA can both improve the antifriction and antiwear properties of LP at a soot content of 0.1%-0.4%, while T-BDS-OLA in LP shows better antifriction and antiwear properties than BDS. The tribological mechanisms can be attributed to both types of soot acting as spacing and roll bearing between the friction surfaces. In addition, the exfoliated graphitic sheets from T-BDS-OLA can form a carbon lubrication layer providing easy sliding.展开更多
Overbased lubricant detergents are important components in lubricating oil. Recently, a lot of papers about the synthesis mechanism, colloidal structure, acid neutralization and antifrictiorL properties of overbased d...Overbased lubricant detergents are important components in lubricating oil. Recently, a lot of papers about the synthesis mechanism, colloidal structure, acid neutralization and antifrictiorL properties of overbased detergents have been published with the development of experimental techniques, which can help us better understand the process of preparation and application of overbased detergents and propound new strategies for improving various performances of overbased detergents. In the future, the synthesis of environmentally friendly and multi-functional lubricant detergent using biodegradable vegetable oil instead of mineral oil as raw materials will be a primary objective for the colloidal lubricant detergent industry.This paper mainly presents the latest advances in the investigation of colloidal lubricant detergents.展开更多
A new method for the preparation of dinuclear molybdenum dithiocarbamates(MoDDCs) is reported.This new method allows for the control of the amount of sulfurization of the Mo2SxO4-x core(x = 1 to 4) in the dinuclear Mo...A new method for the preparation of dinuclear molybdenum dithiocarbamates(MoDDCs) is reported.This new method allows for the control of the amount of sulfurization of the Mo2SxO4-x core(x = 1 to 4) in the dinuclear MoDDCs.This control assists in the tailoring of specific tribological properties of the MoDDCs in both greases and lubricating oils.展开更多
In this paper,we review recent research developments regarding the tribological performances of a series of inorganic nano-additives in lubricating fluids.First,we examine several basic types of inorganic nanomaterial...In this paper,we review recent research developments regarding the tribological performances of a series of inorganic nano-additives in lubricating fluids.First,we examine several basic types of inorganic nanomaterials,including metallic nanoparticles,metal oxides,carbon nanomaterials,and"other"nanomaterials.More specifically,the metallic nanoparticles we examine include silver,copper,nickel,molybdenum,and tungsten nanoparticles;the metal oxides include CuO,ZnO,Fe_(3)O_(4),TiO_(2),ZrO,Al_(2)O_(3),and several double-metal oxides;the carbon nanomaterials include fullerene,carbon quantum dots,carbon nanotubes,graphene,graphene oxides,graphite,and diamond;and the"other"nanomaterials include metal sulfides,rare-earth compounds,layered double hydroxides,clay minerals,hexagonal boron nitride,black phosphorus,and nanocomposites.Second,we summarize the lubrication mechanisms of these nano-additives and identify the factors affecting their tribological performance.Finally,we briefly discuss the challenges faced by inorganic nanoparticles in lubrication applications and discuss future research directions.This review offers new perspectives to improve our understanding of inorganic nano-additives in tribology,as well as several new approaches to expand their practical applications.展开更多
In this study,the nanocomposites of MoS_(2) nanoparticles(NPs)grown on carbon nanotubes(MoS_(2)@CNT),graphene(MoS_(2)@Gr),and fullerene C60(MoS_(2)@C60)were synthesized,characterized,and evaluated for potential use as...In this study,the nanocomposites of MoS_(2) nanoparticles(NPs)grown on carbon nanotubes(MoS_(2)@CNT),graphene(MoS_(2)@Gr),and fullerene C60(MoS_(2)@C60)were synthesized,characterized,and evaluated for potential use as lubricant additives.By using the benefit of the synergistic effect between MoS_(2) and carbon nanomaterials(CNMs),these nanocomposites can be well dispersed in polyalkylene glycol(PAG)base oil and show superior stability compared with pure MoS_(2) NPs.Moreover,the dispersions of MoS_(2)@CNT,MoS_(2)@Gr,and MoS_(2)@C60 added in PAG have noticeably improved friction reducing and antiwear(AW)behaviors at elevated temperature for comparison with that of PAG and PAG containing CNT,Gr,C60,and M0S2 NPs,respectively.The enhanced lubricating properties of these nanocomposites were also elucidated by exploring the tribofilm formed on the disc.展开更多
文摘After brass is coated with tin, heat treatment makes the coating metal Sn and the substrate metallic elements Cu and Zn diffuse with each other. This causes the coating composition to be changed and the interface to be strengthened. The diffusion coating with a multiphase structure formed by this process has excellent properties of antifriction and wear resistance. With the aid of scanning electron microscopy, electronic probe microanalysis and X ray diffraction, the mechanism of the properties is discussed.
文摘The antifrictional polymeric compounds on the base of epoxy binder are received. There are tribotechnical, mechanical, physico-chemical and thermal compounds properties have been researched. The production methods of epoxidographitofluoroplastic materials, rienforced by clothes from tribotechnical goods are proposed.
基金supported by the National Natural Science Foundation of China (Grant No. 51675153)the Major Science and Technology Special Project in Anhui (Grant No. 17030901084)
文摘To improve the tribological behavior of biodiesel soot(BDS) in liquid paraffin(LP), the order of biodiesel soot was increased through thermally oxidized treatment at 500 ℃, and the oil solubility was then improved through a modification using oleylamine(OLA). The BDS and thermally oxidized oleylamine-modified BDS(T-BDS-OLA)were characterized through various methods including the use of TG, FETEM, Raman spectroscopy, FTIR, and a zeta potentiometer. The tribological properties and mechanisms of the BDS before and after the thermally oxidized treatment modification were investigated using a ball-on-disc reciprocating tribometer, FESEM, 3 D laser-scanning microscopy, and Raman spectroscopy. The results showed that T-BDS-OLA has a higher degree of order than the BDS, with an onion-like microstructure. BDS and T-BDS-OLA can both improve the antifriction and antiwear properties of LP at a soot content of 0.1%-0.4%, while T-BDS-OLA in LP shows better antifriction and antiwear properties than BDS. The tribological mechanisms can be attributed to both types of soot acting as spacing and roll bearing between the friction surfaces. In addition, the exfoliated graphitic sheets from T-BDS-OLA can form a carbon lubrication layer providing easy sliding.
文摘Overbased lubricant detergents are important components in lubricating oil. Recently, a lot of papers about the synthesis mechanism, colloidal structure, acid neutralization and antifrictiorL properties of overbased detergents have been published with the development of experimental techniques, which can help us better understand the process of preparation and application of overbased detergents and propound new strategies for improving various performances of overbased detergents. In the future, the synthesis of environmentally friendly and multi-functional lubricant detergent using biodegradable vegetable oil instead of mineral oil as raw materials will be a primary objective for the colloidal lubricant detergent industry.This paper mainly presents the latest advances in the investigation of colloidal lubricant detergents.
文摘A new method for the preparation of dinuclear molybdenum dithiocarbamates(MoDDCs) is reported.This new method allows for the control of the amount of sulfurization of the Mo2SxO4-x core(x = 1 to 4) in the dinuclear MoDDCs.This control assists in the tailoring of specific tribological properties of the MoDDCs in both greases and lubricating oils.
基金The authors are very grateful to the financial supports by the National Natural Science Foundation of China(51805336,11604224,and 61973224)the Natural Science Foundation of Liaoning Province(20170540740,20180550861,2019-ZD-0670,and 2019-ZD-0687)+2 种基金the Scientific Research Project of Education Department of Liaoning Province(lnjc201918)the Tribology Science Fund of State Key Laboratory of Tribology(SKLTKF16B07)the Open Fund of Shenyang Key Laboratory of Aero-engine Materials Tribology(SKLAMT201901).
文摘In this paper,we review recent research developments regarding the tribological performances of a series of inorganic nano-additives in lubricating fluids.First,we examine several basic types of inorganic nanomaterials,including metallic nanoparticles,metal oxides,carbon nanomaterials,and"other"nanomaterials.More specifically,the metallic nanoparticles we examine include silver,copper,nickel,molybdenum,and tungsten nanoparticles;the metal oxides include CuO,ZnO,Fe_(3)O_(4),TiO_(2),ZrO,Al_(2)O_(3),and several double-metal oxides;the carbon nanomaterials include fullerene,carbon quantum dots,carbon nanotubes,graphene,graphene oxides,graphite,and diamond;and the"other"nanomaterials include metal sulfides,rare-earth compounds,layered double hydroxides,clay minerals,hexagonal boron nitride,black phosphorus,and nanocomposites.Second,we summarize the lubrication mechanisms of these nano-additives and identify the factors affecting their tribological performance.Finally,we briefly discuss the challenges faced by inorganic nanoparticles in lubrication applications and discuss future research directions.This review offers new perspectives to improve our understanding of inorganic nano-additives in tribology,as well as several new approaches to expand their practical applications.
基金supported by the National Key Research and Development Program of China(2018YFB2000601)and National Natural Science Foundation of China(Nos.51875553 and 51775536).
文摘In this study,the nanocomposites of MoS_(2) nanoparticles(NPs)grown on carbon nanotubes(MoS_(2)@CNT),graphene(MoS_(2)@Gr),and fullerene C60(MoS_(2)@C60)were synthesized,characterized,and evaluated for potential use as lubricant additives.By using the benefit of the synergistic effect between MoS_(2) and carbon nanomaterials(CNMs),these nanocomposites can be well dispersed in polyalkylene glycol(PAG)base oil and show superior stability compared with pure MoS_(2) NPs.Moreover,the dispersions of MoS_(2)@CNT,MoS_(2)@Gr,and MoS_(2)@C60 added in PAG have noticeably improved friction reducing and antiwear(AW)behaviors at elevated temperature for comparison with that of PAG and PAG containing CNT,Gr,C60,and M0S2 NPs,respectively.The enhanced lubricating properties of these nanocomposites were also elucidated by exploring the tribofilm formed on the disc.