Electroencephalogram signals are time-varying complex electrophysiological signals. Existing studies show that approximate entropy, which is a nonlinear dynamics index, is not an ideal method for electroencephalogram ...Electroencephalogram signals are time-varying complex electrophysiological signals. Existing studies show that approximate entropy, which is a nonlinear dynamics index, is not an ideal method for electroencephalogram analysis. Clinical electroencephalogram measurements usually contain electrical interference signals, creating additional challenges in terms of maintaining robustness of the analytic methods. There is an urgent need for a novel method of nonlinear dynamical analysis of the electroencephalogram that can characterize seizure-related changes in cerebral dynamics. The aim of this paper was to study the fluctuations of approximate entropy in preictal, ictal, and postictal electroencephalogram signals from a patient with absence seizures, and to improve the algorithm used to calculate the approximate entropy. The approximate entropy algorithm, especially our modified version, could accurately describe the dynamical changes of the brain during absence seizures. We could also demonstrate that the complexity of the brain was greater in the normal state than in the ictal state. The fluctuations of the approximate entropy before epileptic seizures observed in this study can form a good basis for further study on the prediction of seizures with nonlinear dynamics.展开更多
The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate ...The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate entropy and a support vector machine that has strong generalization ability were applied to classify electroencephalogram signals at epileptic interictal and ictal periods. Our aim was to verify whether approximate entropy waves can be effectively applied to the automatic real-time detection of epilepsy in the electroencephalogram, and to explore its generalization ability as a classifier trained using a nonlinear dynamics index. Four patients presenting with partial epileptic seizures were included in this study. They were all diagnosed with neocortex localized epilepsy and epileptic foci were clearly observed by electroencephalogram. The electroencephalogram data form the four involved patients were segmented and the characteristic values of each segment, that is, the approximate entropy, were extracted. The support vector machine classifier was constructed with the approximate entropy extracted from one epileptic case, and then electroencephalogram waves of the other three cases were classified, reaching a 93.33% accuracy rate. Our findings suggest that the use of approximate entropy allows the automatic real-time detection of electroencephalogram data in epileptic cases. The combination of approximate entropy and support vector machines shows good generalization ability for the classification of electroencephalogram signals for epilepsy.展开更多
Brain asymmetry for processing visual information is widespread in animals.However,it is still unknown how the complexity of the underlying neural network activities represents this asymmetrical pattern in the brain.I...Brain asymmetry for processing visual information is widespread in animals.However,it is still unknown how the complexity of the underlying neural network activities represents this asymmetrical pattern in the brain.In the present study,we investigated this complexity using the approximate entropy(ApEn)protocol for electroencephalogram(EEG)recordings from the forebrain and midbrain while the music frogs(Nidirana daunchina)attacked prey stimulus.The results showed that(1)more significant prey responses were evoked by the prey stimulus presented in the right visual field than that in the left visual field,consistent with the idea that right-eye preferences for predatory behaviors exist in animals including anurans;(2)in general,the ApEn value of the left hemisphere(especially the left mesencephalon)was greatest under various stimulus conditions,suggesting that visual lateralization could be reflected by the dynamics of underlying neural network activities and that the stable left-hemisphere dominance of EEG ApEn may play an important role in maintaining this brain asymmetry.展开更多
An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often...An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often confronted with the problem of insufficient data points and noisy circumstances, which led to unsatisfactory results. Compared with fractal dimension as well as the standard ApEn, the improved ApEn can extract information underlying sEMG signals more efficiently and accu- rately. The method introduced here can also be applied to other medium-sized and noisy physiological signals.展开更多
Variable polarity plasma arc-gas metal arc welding(VPPA-GMAW)integrates the advantages of VPPA and GMAW,and it is particularly applied to weld thick-plates aluminum alloys.High-speed camera and data acquisition system...Variable polarity plasma arc-gas metal arc welding(VPPA-GMAW)integrates the advantages of VPPA and GMAW,and it is particularly applied to weld thick-plates aluminum alloys.High-speed camera and data acquisition system were used to analyze the arc shape and the welding process electrical signal.According to the analysis of arc swing amplitude and the approximate entropy of arc voltage signal denoised by wavelet threshold method,the influence of VPPA frequency on the arc stability was studied.The results show that the approximate entropy of GMAW arc voltage decreases with the increase of VPPA frequency in a certain range,and the stability of the hybrid arc is significantly improved.The spectral analysis shows that the arc stability is reduced due to the resonance effect between the VPPA and the GMAW arc when the VPPA frequency closes to the GMAW arc pulse frequency.The results are helpful to understand hybrid welding mechanism and the selection of welding process parameters.展开更多
Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation ...Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation has been calculated and analysed to investigate their relation with the stability of electric arc and welding process. The extensive experimental and calculated results show that the approximate entropy of welding current is significantly and positively correlated with arc and welding process stability, whereas its standard deviation is correlated with them negatively. A larger approximate entropy and a smaller standard deviation imply a more stable arc and welding process, and vice versa. As a result, the approximate entropy of welding current promises well in assessing and quantifying the stability of electric arc and welding process in short-circuiting gas metal arc welding.展开更多
Based on the phase space reconstruction of welding current in short-circuiting transfer arc welding under carbon dioxide, the approximate entropy of welding current and its standard deviation have been calculated and ...Based on the phase space reconstruction of welding current in short-circuiting transfer arc welding under carbon dioxide, the approximate entropy of welding current and its standard deviation have been calculated and analyzed at different welding speeds and different electrode extensions respectively. The experimental and calculated results show that at a certain arc voltage, wire feeding rate and gas flow rate, welding speed and electrode extension have significant effects not only on the approximate entropy of welding current, but also on the stability of welding process. Further analysis proves that when the welding speed and electrode extension are in an appropriate range respectively, the welding current approximate entropy attains maximum and its standard deviation minimum. Just under such circumstances, the welding process is in the most stable state.展开更多
Approximate entropy (ApEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, partic...Approximate entropy (ApEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, particularly operative in the analysis of physiological signals that involve relatively small amount of data. However, the similarity definition of vectors based on Heaviside function, of which the boundary is discontinuous and hard, may cause some problems in the validity and accuracy of ApEn. To overcome these problems, a modified ApEn based on fuzzy similarity (mApEn) was proposed. The performance on the MIX stochastic model, as well as those on the Logistic map and the Hennon map with noise, shows that the fuzzy similarity-based ApEn gets more satisfying results than the standard ApEn when characterizing systems with different regularities.展开更多
Based on the time-delayed embedding method of phase space reconstruction, a new method to compute the approximate entropy (ApEn) of electroencephalogram (EEG) is proposed. The computational results show that there...Based on the time-delayed embedding method of phase space reconstruction, a new method to compute the approximate entropy (ApEn) of electroencephalogram (EEG) is proposed. The computational results show that there are signiticant differences between epileptic: EEG and normal EEG in the approximate entropy with the variance of embedding dimension. This conclusion is helpful to analyze the dynamical behavior of difibrent EEGs by entropy.展开更多
A method of extracting and detecting vehicle stability state characteristics based on entropy is proposed.The vehicle’s longitudinal and lateral dynamics models are established for complex driving and maneuver condit...A method of extracting and detecting vehicle stability state characteristics based on entropy is proposed.The vehicle’s longitudinal and lateral dynamics models are established for complex driving and maneuver conditions.The corresponding state observer is designed by adopting the moving horizon estimation algorithm,which realizes the observation of the vehicle stability state considering the global state information.Meanwhile,the Shannon entropy is modified to approximate entropy,and the approximate entropy value of the observed vehicle state is calculated.Furthermore,the optimal controller is designed to further validate the reliability of the entropy value as the reference of control system.Simulation results demonstrate that this method can quickly detect the instability state of the system during the process of vehicle driving,which provides a reference for risk prediction and active control.展开更多
The multiscale entropy (MSE) reveals the intrinsic multiple scales in the complexity of physical and physiological signals, which are usually featured by heavy-tailed distributions. However, most research results ar...The multiscale entropy (MSE) reveals the intrinsic multiple scales in the complexity of physical and physiological signals, which are usually featured by heavy-tailed distributions. However, most research results are pure experimental search. Recently, Costa et al. have made the first attempt to present the theoretical basis of MSE, but it only supports the Gaussian distribution [Phys Rev. E 71 (2005) 021906]. We present the theoretical basis of MSE under the inverse Gaussian distribution, a typical model for physiological, physical and financial data sets. The analysis allows for uncorrelated inverse Gaussian process and 1/f noise with the multivariate inverse Gaussian distribution, and then provides a reliable foundation for the potential applications of MSE to explore complev nhwical and Dhwical time series.展开更多
Nonlinear analysis of heart rate variability (HRV) has become important as heart behaves as a complex system. In this work, the approximate entropy (ApEn) has been used as a nonlinear measure. A new concept of est...Nonlinear analysis of heart rate variability (HRV) has become important as heart behaves as a complex system. In this work, the approximate entropy (ApEn) has been used as a nonlinear measure. A new concept of estimating the ApEn in different segments of long length of the recorded data called modified multiple scale (segment) entropy (MMPE) is introduced. The idea of estimating the approximate entropy in different segments is useful to detect the nonlinear dynamics of the heart present in the entire length of data. The present work has been carried out for three cases namely the normal healthy heart (NHH) data, congestive heart failure (CHF) data and Atrial fibrillation (AF) data and the data are analyzed using MMPE techniques. It is observed that the mean value of ApEn for NHH data is much higher than the mean values for CHF data and AF data. The ApEn profiles of CHF, AF and NHH data for different segments obtained using MPE profiles measures the heart dynamism for the three different cases. Also the power spectral density is obtained using fast fourier transform (FFT) analysis and the ratio of LF/HF (low frequency/high frequency) power are computed on multiple scales/segments namely MPLH (multiple scale low frequency to high frequency) for the NHH data, CHF data and AF data and analyzed using MPLH techniques. The results are presented and discussed in the paper.展开更多
Landslide deformation is affected by its geological conditions and many environmental factors.So it has the characteristics of dynamic,nonlinear and unstable,which makes the prediction of landslide displacement diffic...Landslide deformation is affected by its geological conditions and many environmental factors.So it has the characteristics of dynamic,nonlinear and unstable,which makes the prediction of landslide displacement difficult.In view of the above problems,this paper proposes a dynamic prediction model of landslide displacement based on the improvement of complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN),approximate entropy(ApEn)and convolution long short-term memory(CNN-LSTM)neural network.Firstly,ICEEMDAN and Ap En are used to decompose the cumulative displacements into trend,periodic and random displacements.Then,the least square quintic polynomial function is used to fit the displacement of trend term,and the CNN-LSTM is used to predict the displacement of periodic term and random term.Finally,the displacement prediction results of trend term,periodic term and random term are superimposed to obtain the cumulative displacement prediction value.The proposed model has been verified in Bazimen landslide in the Three Gorges Reservoir area of China.The experimental results show that the model proposed in this paper can more effectively predict the displacement changes of landslides.As compared with long short-term memory(LSTM)neural network,gated recurrent unit(GRU)network model and back propagation(BP)neural network,CNN-LSTM neural network had higher prediction accuracy in predicting the periodic displacement,with the mean absolute percentage error(MAPE)reduced by 3.621%,6.893% and 15.886% respectively,and the root mean square error(RMSE)reduced by 3.834 mm,3.945 mm and 7.422mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide a new insight for practical landslide prevention and control engineering.展开更多
The PP intervals of pulse main peaks from healthy and unhealthy people(arrhythmia) have different nonlinear char-acteristics. In this paper,the extraction of PP intervals of pulse main peaks is achieved by picking up ...The PP intervals of pulse main peaks from healthy and unhealthy people(arrhythmia) have different nonlinear char-acteristics. In this paper,the extraction of PP intervals of pulse main peaks is achieved by picking up P peaks of pulse wave with wavelet transform. Furthermore,several nonlinear parameters(correlative dimensions,maximum Lyapunov exponents,com-plexity and approximate entropy) of the PP intervals of pulse main peaks extracted from normal and unhealthy pulse signals are calculated,with the results showing that these nonlinear parameters calculated from the main wave interval signals are helpful for analyzing human's health state and diagnosing heart diseases.展开更多
Membrane proteins are embedded in the lipid bilayer,which creates a suitable environment for their actions. It is important to decide which tpye it belongs to because it is closely relevant to its biological function ...Membrane proteins are embedded in the lipid bilayer,which creates a suitable environment for their actions. It is important to decide which tpye it belongs to because it is closely relevant to its biological function and its interaction process with other molecules in a biological system. Membrane proteins have different types. The function of a membrane protein is closely correlated with the type it belongs to. In this study,on the basis of the concept of pseudo amino acid (PseAA) composition originally introduced by Chou,the value of approximate entropy (ApEn) of the query membrane protein was used to integrate the complementary information. By fusing fifteen powerful individual fuzzy K-nearest neighbor ( FKNN) classifiers,an ensemble classifier was presented. Each basic classifier was trained in PseAA composition of membrane protein sequences with different parameters. The results of experiments demonstrate it is efficient for the structural prediction of membrane proteins.展开更多
A stall diagnosis method based on the entropy feature extraction algorithm is developed in axial compressors.The reliability of the proposed method is determined and a parametric sensitivity analysis is experimentally...A stall diagnosis method based on the entropy feature extraction algorithm is developed in axial compressors.The reliability of the proposed method is determined and a parametric sensitivity analysis is experimentally conducted for two different types of compressor stall diagnoses.A collection of time‐resolved pressure sensors is mounted circumferentially and along the chord direction to measure the dynamic pressure on the casing.Results show that the stall and prestall precursor embedded in the dynamic pressures are identified through nonlinear feature perturbation extraction using the entropy feature extraction algorithm.Further analysis demonstrates that the prestall precursor with the peak entropy value is related to the unsteady tip leakage flow for the spike‐type stall diagnosis.The modal wave inception with increasing amplitude is identified by the considerable increase of the entropy value.The flow field in the tip region indicates that the modal wave corresponds to the flow separation in the suction side of the rotor blade.The warning time is 100–300 rotor revolutions for both types of stall diagnoses,which is beneficial for stall control in different axial compressors.Moreover,a parametric study of the embedding dimension m,similar tolerance n,similar radius r,and data length N in the fuzzy entropy method is conducted to determine the optimal parameter setting for stall diagnosis.The stall warning based on the entropy feature extraction algorithm provides a new stall diagnosis approach in the axial compressor with different stall types.This stall warning can also be adopted as an online stability monitoring index when using the concept of active stall control.展开更多
The recently introduced multivariate multiscale sample entropy(MMSE)well evaluates the long correlations in multiple channels,so that it can reveal the complexity of multivariate biological signals.The existing MMSE a...The recently introduced multivariate multiscale sample entropy(MMSE)well evaluates the long correlations in multiple channels,so that it can reveal the complexity of multivariate biological signals.The existing MMSE algorithm deals with short time series statically whereas long time series are common for real-time computation in practical use.As a solution,we novelly proposed our dynamic MMSE(DMMSE)as an extension of MMSE.This helps us gain greater insight into the complexity of each section of time series,producing multifaceted and more robust estimates than the standard MMSE.The simulation results illustrated the feasibility and well performance in the brain death diagnosis.展开更多
基金supported by the National Natural Science Foundation of China, No.10671213 and 11101440the Natural Science Foundation of Guangdong ProvinceFundamental Research Funds for the Central Universities
文摘Electroencephalogram signals are time-varying complex electrophysiological signals. Existing studies show that approximate entropy, which is a nonlinear dynamics index, is not an ideal method for electroencephalogram analysis. Clinical electroencephalogram measurements usually contain electrical interference signals, creating additional challenges in terms of maintaining robustness of the analytic methods. There is an urgent need for a novel method of nonlinear dynamical analysis of the electroencephalogram that can characterize seizure-related changes in cerebral dynamics. The aim of this paper was to study the fluctuations of approximate entropy in preictal, ictal, and postictal electroencephalogram signals from a patient with absence seizures, and to improve the algorithm used to calculate the approximate entropy. The approximate entropy algorithm, especially our modified version, could accurately describe the dynamical changes of the brain during absence seizures. We could also demonstrate that the complexity of the brain was greater in the normal state than in the ictal state. The fluctuations of the approximate entropy before epileptic seizures observed in this study can form a good basis for further study on the prediction of seizures with nonlinear dynamics.
基金financially supported by the National Natural Science Foundation of China,No.61263011,81000554Program in Sun Yat-sen University supported by Fundamental Research Funds for the Central Universities,No.11ykpy07+1 种基金Natural Science Foundation of Guangdong Province,No.S2011010005309Innovation Fund of Xinjiang Medical University,No.XJC201209
文摘The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate entropy and a support vector machine that has strong generalization ability were applied to classify electroencephalogram signals at epileptic interictal and ictal periods. Our aim was to verify whether approximate entropy waves can be effectively applied to the automatic real-time detection of epilepsy in the electroencephalogram, and to explore its generalization ability as a classifier trained using a nonlinear dynamics index. Four patients presenting with partial epileptic seizures were included in this study. They were all diagnosed with neocortex localized epilepsy and epileptic foci were clearly observed by electroencephalogram. The electroencephalogram data form the four involved patients were segmented and the characteristic values of each segment, that is, the approximate entropy, were extracted. The support vector machine classifier was constructed with the approximate entropy extracted from one epileptic case, and then electroencephalogram waves of the other three cases were classified, reaching a 93.33% accuracy rate. Our findings suggest that the use of approximate entropy allows the automatic real-time detection of electroencephalogram data in epileptic cases. The combination of approximate entropy and support vector machines shows good generalization ability for the classification of electroencephalogram signals for epilepsy.
基金supported by the grants from the National Natural Science Foundation of China(No.31970422,No.31672305 and No.31372217 to Guangzhan Fang)the Key Research Project of Education Department of Sichuan Province(No.18ZA0321 to Yansu Liu)。
文摘Brain asymmetry for processing visual information is widespread in animals.However,it is still unknown how the complexity of the underlying neural network activities represents this asymmetrical pattern in the brain.In the present study,we investigated this complexity using the approximate entropy(ApEn)protocol for electroencephalogram(EEG)recordings from the forebrain and midbrain while the music frogs(Nidirana daunchina)attacked prey stimulus.The results showed that(1)more significant prey responses were evoked by the prey stimulus presented in the right visual field than that in the left visual field,consistent with the idea that right-eye preferences for predatory behaviors exist in animals including anurans;(2)in general,the ApEn value of the left hemisphere(especially the left mesencephalon)was greatest under various stimulus conditions,suggesting that visual lateralization could be reflected by the dynamics of underlying neural network activities and that the stable left-hemisphere dominance of EEG ApEn may play an important role in maintaining this brain asymmetry.
基金Project supported by the National Natural Science Foundation of China (No. 60171006) and the National Basic Research Program (973) of China (No. 2005CB724303)
文摘An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often confronted with the problem of insufficient data points and noisy circumstances, which led to unsatisfactory results. Compared with fractal dimension as well as the standard ApEn, the improved ApEn can extract information underlying sEMG signals more efficiently and accu- rately. The method introduced here can also be applied to other medium-sized and noisy physiological signals.
基金supported by the National Natural Science Foundation of China(51665044)Natural Science Foundation of Inner Mongolia(2019LH05017)+1 种基金Science and Technology Programs of Inner Mongolia(2020GG0313)Major Basic Research Open Subjects of Inner Mongolia Autonomous Region.
文摘Variable polarity plasma arc-gas metal arc welding(VPPA-GMAW)integrates the advantages of VPPA and GMAW,and it is particularly applied to weld thick-plates aluminum alloys.High-speed camera and data acquisition system were used to analyze the arc shape and the welding process electrical signal.According to the analysis of arc swing amplitude and the approximate entropy of arc voltage signal denoised by wavelet threshold method,the influence of VPPA frequency on the arc stability was studied.The results show that the approximate entropy of GMAW arc voltage decreases with the increase of VPPA frequency in a certain range,and the stability of the hybrid arc is significantly improved.The spectral analysis shows that the arc stability is reduced due to the resonance effect between the VPPA and the GMAW arc when the VPPA frequency closes to the GMAW arc pulse frequency.The results are helpful to understand hybrid welding mechanism and the selection of welding process parameters.
基金Project supported by the National Natural Science Foundation of China(Grant Nos50375053 and 50575077)
文摘Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation has been calculated and analysed to investigate their relation with the stability of electric arc and welding process. The extensive experimental and calculated results show that the approximate entropy of welding current is significantly and positively correlated with arc and welding process stability, whereas its standard deviation is correlated with them negatively. A larger approximate entropy and a smaller standard deviation imply a more stable arc and welding process, and vice versa. As a result, the approximate entropy of welding current promises well in assessing and quantifying the stability of electric arc and welding process in short-circuiting gas metal arc welding.
基金Supported by Project of the National Natural Science Foundation of China(50375053,50575077)
文摘Based on the phase space reconstruction of welding current in short-circuiting transfer arc welding under carbon dioxide, the approximate entropy of welding current and its standard deviation have been calculated and analyzed at different welding speeds and different electrode extensions respectively. The experimental and calculated results show that at a certain arc voltage, wire feeding rate and gas flow rate, welding speed and electrode extension have significant effects not only on the approximate entropy of welding current, but also on the stability of welding process. Further analysis proves that when the welding speed and electrode extension are in an appropriate range respectively, the welding current approximate entropy attains maximum and its standard deviation minimum. Just under such circumstances, the welding process is in the most stable state.
基金The National Basic Research Program (973)of China (No 2005CB724303)
文摘Approximate entropy (ApEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, particularly operative in the analysis of physiological signals that involve relatively small amount of data. However, the similarity definition of vectors based on Heaviside function, of which the boundary is discontinuous and hard, may cause some problems in the validity and accuracy of ApEn. To overcome these problems, a modified ApEn based on fuzzy similarity (mApEn) was proposed. The performance on the MIX stochastic model, as well as those on the Logistic map and the Hennon map with noise, shows that the fuzzy similarity-based ApEn gets more satisfying results than the standard ApEn when characterizing systems with different regularities.
基金Natural Science Foundation of Fujian Province of China grant number: 2010J01210 and T0750008
文摘Based on the time-delayed embedding method of phase space reconstruction, a new method to compute the approximate entropy (ApEn) of electroencephalogram (EEG) is proposed. The computational results show that there are signiticant differences between epileptic: EEG and normal EEG in the approximate entropy with the variance of embedding dimension. This conclusion is helpful to analyze the dynamical behavior of difibrent EEGs by entropy.
基金Supported by Beijing Institute of Technology Research Fund Program for Young Scholars(3030011181911)。
文摘A method of extracting and detecting vehicle stability state characteristics based on entropy is proposed.The vehicle’s longitudinal and lateral dynamics models are established for complex driving and maneuver conditions.The corresponding state observer is designed by adopting the moving horizon estimation algorithm,which realizes the observation of the vehicle stability state considering the global state information.Meanwhile,the Shannon entropy is modified to approximate entropy,and the approximate entropy value of the observed vehicle state is calculated.Furthermore,the optimal controller is designed to further validate the reliability of the entropy value as the reference of control system.Simulation results demonstrate that this method can quickly detect the instability state of the system during the process of vehicle driving,which provides a reference for risk prediction and active control.
基金Supported by the Natural Science Foundation of China under Grant 60672095, the National Information Security Program of China Grant 2005A14, and the National High Technology Project of China under Grant 2002AA143010 and 2003AA143040.
文摘The multiscale entropy (MSE) reveals the intrinsic multiple scales in the complexity of physical and physiological signals, which are usually featured by heavy-tailed distributions. However, most research results are pure experimental search. Recently, Costa et al. have made the first attempt to present the theoretical basis of MSE, but it only supports the Gaussian distribution [Phys Rev. E 71 (2005) 021906]. We present the theoretical basis of MSE under the inverse Gaussian distribution, a typical model for physiological, physical and financial data sets. The analysis allows for uncorrelated inverse Gaussian process and 1/f noise with the multivariate inverse Gaussian distribution, and then provides a reliable foundation for the potential applications of MSE to explore complev nhwical and Dhwical time series.
文摘Nonlinear analysis of heart rate variability (HRV) has become important as heart behaves as a complex system. In this work, the approximate entropy (ApEn) has been used as a nonlinear measure. A new concept of estimating the ApEn in different segments of long length of the recorded data called modified multiple scale (segment) entropy (MMPE) is introduced. The idea of estimating the approximate entropy in different segments is useful to detect the nonlinear dynamics of the heart present in the entire length of data. The present work has been carried out for three cases namely the normal healthy heart (NHH) data, congestive heart failure (CHF) data and Atrial fibrillation (AF) data and the data are analyzed using MMPE techniques. It is observed that the mean value of ApEn for NHH data is much higher than the mean values for CHF data and AF data. The ApEn profiles of CHF, AF and NHH data for different segments obtained using MPE profiles measures the heart dynamism for the three different cases. Also the power spectral density is obtained using fast fourier transform (FFT) analysis and the ratio of LF/HF (low frequency/high frequency) power are computed on multiple scales/segments namely MPLH (multiple scale low frequency to high frequency) for the NHH data, CHF data and AF data and analyzed using MPLH techniques. The results are presented and discussed in the paper.
基金funded by the technology innovation guidance special project of Shaanxi Province(Grant No.2020CGXNX009)the supported by the National Natural Science Foundation of China(Grant No.62203344)+1 种基金the Shaanxi Provincial Department of Education serves local special projects(Grant No.22JC036)the Natural Science Basic Research Plan of Shaanxi Province(Grant No.2022JM-322)。
文摘Landslide deformation is affected by its geological conditions and many environmental factors.So it has the characteristics of dynamic,nonlinear and unstable,which makes the prediction of landslide displacement difficult.In view of the above problems,this paper proposes a dynamic prediction model of landslide displacement based on the improvement of complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN),approximate entropy(ApEn)and convolution long short-term memory(CNN-LSTM)neural network.Firstly,ICEEMDAN and Ap En are used to decompose the cumulative displacements into trend,periodic and random displacements.Then,the least square quintic polynomial function is used to fit the displacement of trend term,and the CNN-LSTM is used to predict the displacement of periodic term and random term.Finally,the displacement prediction results of trend term,periodic term and random term are superimposed to obtain the cumulative displacement prediction value.The proposed model has been verified in Bazimen landslide in the Three Gorges Reservoir area of China.The experimental results show that the model proposed in this paper can more effectively predict the displacement changes of landslides.As compared with long short-term memory(LSTM)neural network,gated recurrent unit(GRU)network model and back propagation(BP)neural network,CNN-LSTM neural network had higher prediction accuracy in predicting the periodic displacement,with the mean absolute percentage error(MAPE)reduced by 3.621%,6.893% and 15.886% respectively,and the root mean square error(RMSE)reduced by 3.834 mm,3.945 mm and 7.422mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide a new insight for practical landslide prevention and control engineering.
基金Project (No. 10402008) supported by the National Natural ScienceFoundation of China
文摘The PP intervals of pulse main peaks from healthy and unhealthy people(arrhythmia) have different nonlinear char-acteristics. In this paper,the extraction of PP intervals of pulse main peaks is achieved by picking up P peaks of pulse wave with wavelet transform. Furthermore,several nonlinear parameters(correlative dimensions,maximum Lyapunov exponents,com-plexity and approximate entropy) of the PP intervals of pulse main peaks extracted from normal and unhealthy pulse signals are calculated,with the results showing that these nonlinear parameters calculated from the main wave interval signals are helpful for analyzing human's health state and diagnosing heart diseases.
基金National Nature Science Foundations of China (No.60975059, No.60775052)Specialized Research Fund for the Doctoral Program of Higher Education from Ministry of Education of China ( No.20090075110002)Projects of the Shanghai Committee of Science and Technology (No.09JC1400900, No.08JC1400100, No.10DZ0506500)
文摘Membrane proteins are embedded in the lipid bilayer,which creates a suitable environment for their actions. It is important to decide which tpye it belongs to because it is closely relevant to its biological function and its interaction process with other molecules in a biological system. Membrane proteins have different types. The function of a membrane protein is closely correlated with the type it belongs to. In this study,on the basis of the concept of pseudo amino acid (PseAA) composition originally introduced by Chou,the value of approximate entropy (ApEn) of the query membrane protein was used to integrate the complementary information. By fusing fifteen powerful individual fuzzy K-nearest neighbor ( FKNN) classifiers,an ensemble classifier was presented. Each basic classifier was trained in PseAA composition of membrane protein sequences with different parameters. The results of experiments demonstrate it is efficient for the structural prediction of membrane proteins.
基金National Natural Science Foundation of China,Grant/Award Number:51922098,51727810National Science and TechnologyMajor Project of China,Grant/Award Number:J2019‐II‐0020‐0041Special Fund for the Member of Youth Innovation Promotion Association of Chinese Academy of Sciences,Grant/Award Number:2018173。
文摘A stall diagnosis method based on the entropy feature extraction algorithm is developed in axial compressors.The reliability of the proposed method is determined and a parametric sensitivity analysis is experimentally conducted for two different types of compressor stall diagnoses.A collection of time‐resolved pressure sensors is mounted circumferentially and along the chord direction to measure the dynamic pressure on the casing.Results show that the stall and prestall precursor embedded in the dynamic pressures are identified through nonlinear feature perturbation extraction using the entropy feature extraction algorithm.Further analysis demonstrates that the prestall precursor with the peak entropy value is related to the unsteady tip leakage flow for the spike‐type stall diagnosis.The modal wave inception with increasing amplitude is identified by the considerable increase of the entropy value.The flow field in the tip region indicates that the modal wave corresponds to the flow separation in the suction side of the rotor blade.The warning time is 100–300 rotor revolutions for both types of stall diagnoses,which is beneficial for stall control in different axial compressors.Moreover,a parametric study of the embedding dimension m,similar tolerance n,similar radius r,and data length N in the fuzzy entropy method is conducted to determine the optimal parameter setting for stall diagnosis.The stall warning based on the entropy feature extraction algorithm provides a new stall diagnosis approach in the axial compressor with different stall types.This stall warning can also be adopted as an online stability monitoring index when using the concept of active stall control.
基金supported by KAKENHI(Grant Nos.21360179,22560425)(JAPAN)supported by the Key Project of National Science Foundation of China(Grant Nos.11232005)The Ministry of Education Doctoral Foundation(Grant Nos.20120074110020)
文摘The recently introduced multivariate multiscale sample entropy(MMSE)well evaluates the long correlations in multiple channels,so that it can reveal the complexity of multivariate biological signals.The existing MMSE algorithm deals with short time series statically whereas long time series are common for real-time computation in practical use.As a solution,we novelly proposed our dynamic MMSE(DMMSE)as an extension of MMSE.This helps us gain greater insight into the complexity of each section of time series,producing multifaceted and more robust estimates than the standard MMSE.The simulation results illustrated the feasibility and well performance in the brain death diagnosis.