In this paper,we consider the price of catastrophe options with credit risk in a regime-switching model.We assume that the macroeconomic states are described by a continuous-time Markov chain with a finite state space...In this paper,we consider the price of catastrophe options with credit risk in a regime-switching model.We assume that the macroeconomic states are described by a continuous-time Markov chain with a finite state space.By using the measure change technique,we derive the price expressions of catastrophe put options.Moreover,we conduct some numerical analysis to demonstrate how the parameters of the model affect the price of the catastrophe put option.展开更多
The t-distribution has a “fat tail” feature, which is more suitable than the normal probability density function to describe the distribution characteristics of return on assets. The difficulty of using t-distributi...The t-distribution has a “fat tail” feature, which is more suitable than the normal probability density function to describe the distribution characteristics of return on assets. The difficulty of using t-distribution to price European options is that a fat tail can lead to a deviation in one integral required for option pricing. We use a distribution called logarithmic truncated t-distribution to price European options. A risk neutral valuation method was used to obtain a European option pricing model with logarithmic truncated t-distribution.展开更多
基金supported by the Jiangsu University Philosophy and Social Science Research Project(Grant No.2019SJA1326).
文摘In this paper,we consider the price of catastrophe options with credit risk in a regime-switching model.We assume that the macroeconomic states are described by a continuous-time Markov chain with a finite state space.By using the measure change technique,we derive the price expressions of catastrophe put options.Moreover,we conduct some numerical analysis to demonstrate how the parameters of the model affect the price of the catastrophe put option.
文摘The t-distribution has a “fat tail” feature, which is more suitable than the normal probability density function to describe the distribution characteristics of return on assets. The difficulty of using t-distribution to price European options is that a fat tail can lead to a deviation in one integral required for option pricing. We use a distribution called logarithmic truncated t-distribution to price European options. A risk neutral valuation method was used to obtain a European option pricing model with logarithmic truncated t-distribution.