期刊文献+
共找到71,388篇文章
< 1 2 250 >
每页显示 20 50 100
Revealing the contribution of basilar membrane's biological activity to the mechanism of the cochlear phonosensitive amplification
1
作者 J.Y.LIANG Wenjuan YAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第5期823-840,共18页
Explaining the mechanism of the cochlear active phonosensitive amplification has been a major problem in medicine.The basilar membrane(BM)is the key infrastructure.In 1960,Nobel Laureate von B′ek′esy first discovere... Explaining the mechanism of the cochlear active phonosensitive amplification has been a major problem in medicine.The basilar membrane(BM)is the key infrastructure.In 1960,Nobel Laureate von B′ek′esy first discovered BM's traveling wave motion.Since that time,BM's models only have considered the traveling wave but not the biological activity.Therefore,a new model considering changes of BM's stiffness in space and time is established based on the immersed boundary method to describe its biological activity.It not only reproduces the results of traveling wave motion but also explains the mechanization on the generation of traveling wave.An important discovery is that changes of BM's stiffness in space and time will cause the unstable global resonance,which will induce amplification of sounds in cochlea.An important inference is that biological activity shall be included in the application of mechanical principles to the analysis of life,which is the essential difference between biomechanics and general mechanics. 展开更多
关键词 basilar membrane(BM) biological activity mechanical analysis cochlear phonosensitive amplification
下载PDF
EFFECT OF LIPOSOMAL TRANSFECTION OF HTERT ON APOPTOSIS OF NEWBORN RAT COCHLEAR BASILAR MEMBRANE CELLS 被引量:1
2
作者 XU YInglong LIU Hui +1 位作者 WANG Junli XU Min 《Journal of Otology》 2012年第2期105-108,共4页
Objective The aim of this study is to investigate the effect of transfected hTERT gene on cell apoptosis of newborn rat cochlear basilar membrane cells (CBMCs). Methods CBMCs isolated from newborn rat cochlear were tr... Objective The aim of this study is to investigate the effect of transfected hTERT gene on cell apoptosis of newborn rat cochlear basilar membrane cells (CBMCs). Methods CBMCs isolated from newborn rat cochlear were transfected using a plasmid containing human telomerase reverase transcriptase gene (pCI-neo-hTERT),and were screened using G418 to obtain stable transfected cell lines. Cell apoptosis rate was analyzed by flow cytometry. hTERT and apoptosis related genes expression were detected by reverse transcriptase polymerase chain reaction (RT-PCR). Results hTERT gene expression was detected 72 hours after gene transfection in transfected cells. The apoptotic rate of transfected CBMCs significantly reduced.Expression of apoptosis related genes correspondingly changed. Conclusion Transfection of hTERT gene leads to reduced apoptosis rate in newborn rat CBMCs.and lower expression of apaf1, Caspase3 and BCL2 in transfected cells as compared to that of normal CBMCs. 展开更多
关键词 COCHLEAR basilar membrane cel(lCBMC) HTERT rat APOPTOSIS
下载PDF
Enhancement of vibration velocity of basilar membrane elicited with electric stimuli by nitric oxide synthase blockade
3
作者 郭梦和 黄以乐 任田英 《Journal of Medical Colleges of PLA(China)》 CAS 1999年第2期127-131,共5页
Objectics: To demonstrate the effects of NO synthase (NOS ) blockade on the OHCs. Methods: The Nnitro L-arginine (L-NNA) was used and the vibration velocity of basilar membrane (BMV ) was observed. Pigmented guinea pi... Objectics: To demonstrate the effects of NO synthase (NOS ) blockade on the OHCs. Methods: The Nnitro L-arginine (L-NNA) was used and the vibration velocity of basilar membrane (BMV ) was observed. Pigmented guinea pigs were anesthetized and surgically prepared to permit infusion of L- NNA into the scala tympani of basal turn of cochlea . The basilar membrane (BM ) vibration and compound action potential (cAP ), endocochlear potential (EP ) and cochlear mierophonic (CM ) were monitored. Eight μ1 of 1. 6 mmol/L- L- NNA was infused into the perilymph of scala tympani . The BM velocity responses elicited with direct current (DC ) pulses were recorded. Results: The BMV was increased by approximately 3 folds following infusion of L-NNA. The CM de creased by a small amount and there was no significant change in CP. This phenomenon occurs only in the cochlearsensitivity has been lost less than 40 dB . No improvement in BM velocity if the cochlear sensitivity was ’normal’ or was damaged too severely. Conclusion: The results imply that NO bas the excitotoxicity on OHCs, it can promote the injury of cochlea when noise is exposed. L-NNA may act as a guardian when facts of trauma act on cochlea. 展开更多
关键词 basilar membrane velocity : ELECTRIC STIMULATION NITRIC oxide
下载PDF
Direct current pulse elicits basilar membrane vibration in guinea pigs
4
作者 郭梦和 任田英 Alfred L Nuttall 《Journal of Medical Colleges of PLA(China)》 CAS 2000年第3期231-235,共5页
Objective:To study the electromotility of the basilar membrane (BM) of guinea pigs in vivo. Methods :A pair of platinum-iridium wire electrodes were deposited into the holes drilled into the scala vestibuli and scala ... Objective:To study the electromotility of the basilar membrane (BM) of guinea pigs in vivo. Methods :A pair of platinum-iridium wire electrodes were deposited into the holes drilled into the scala vestibuli and scala tympani on the basal turn of cochlea. The organ of Corti was stimulated with rectangular, constant current pulses . The displacement and velocity of BM were measured with laser doppler velocimeter. Results: The electrically elicited displacement of BM moved toward the scala where the electrode was positively charged. The waveform of BM displacement generally corresponded to the shape of the rectangular pulse of electric current. Ringing responses could be seen at the onset and offset of current pulse reflecting transient responses of the organ of Corti. In the cochlea of hearing-impaired or dead animal, direct current (DC) could still elicit a BM displacement but the ringing response was attenuated or disappeared. This phenomenon was probably due to metabolic disturbance in the damaged outer hair cells. In the sensitive cochlea, the BM vibration induced with direct current was similar to that induced by acoustic stimulation, and the BM moves in a traveling wave pattern. Conclusion: The findings of this experiment implicated that the DC stimulation of the cochlea conduces the contraction or elongation of OHCs. The electromotility of OHCs provides sufficient force to displace the BM. In the electrically stimulated normal cochlea,transient response of OHCs can induce resonant vibration at the same frequency as that Of the characteristic frequency (CF) of a partition in the BM. The vibration should be an active process of energy depletion associated with the cochlear amplifier.The vibration of BM can propagate to other partition of BM according to the traveling wave theory. This characteristic has laid the foundation for the electromotile hearing and electrically evoked otoacoustic emission. 展开更多
关键词 COCHLEA VIBRATION basilar membrane ELECTROMOTILITY
下载PDF
Milk fat globule membrane supplementation protects againstβ-lactoglobul-ininduced food allergy in mice via upregulation of regulatory T cells and enhancement of intestinal barrier in a microbiota-derived short-chain fatty acids manner 被引量:1
5
作者 Han Gong Tiange Li +3 位作者 Dong Liang Jingxin Gao Xiaohan Liu Xueying Mao 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期124-136,共13页
Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ... Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA. 展开更多
关键词 Cow’s milk allergy Milk fat globule membrane Gut microbiota Short-chain fatty acid G protein-coupled receptor Regulatory T cell
下载PDF
Machine learning for membrane design and discovery
6
作者 Haoyu Yin Muzi Xu +4 位作者 Zhiyao Luo Xiaotian Bi Jiali Li Sui Zhang Xiaonan Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期54-70,共17页
Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research an... Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research and development norm of new materials for energy and environment.This review provides an overview and perspectives on ML methodologies and their applications in membrane design and dis-covery.A brief overview of membrane technologies isfirst provided with the current bottlenecks and potential solutions.Through an appli-cations-based perspective of AI-aided membrane design and discovery,we further show how ML strategies are applied to the membrane discovery cycle(including membrane material design,membrane application,membrane process design,and knowledge extraction),in various membrane systems,ranging from gas,liquid,and fuel cell separation membranes.Furthermore,the best practices of integrating ML methods and specific application targets in membrane design and discovery are presented with an ideal paradigm proposed.The challenges to be addressed and prospects of AI applications in membrane discovery are also highlighted in the end. 展开更多
关键词 Machine learning membranes AI for membrane DATA-DRIVEN DESIGN
下载PDF
Electrifying Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ) for focalized heating in oxygen transport membranes
7
作者 Marwan Laqdiem Julio García-Fayos +6 位作者 Laura Almar Alfonso J.Carrillo Álvaro Represa JoséM.López Nieto Sonia Escolástico David Catalán-Martinez Jose M.Serra 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期99-110,共12页
Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production... Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned. 展开更多
关键词 Oxygen permeation Oxidative dehydrogenation of ethane Oxygen transport membranes Joule effect Mixed ionic-electronic conductors Catalytic membrane reactors
下载PDF
Review on current development of polybenzimidazole membrane for lithium battery
8
作者 Yonggui Deng Arshad Hussain +3 位作者 Waseem Raza Xingke Cai Dongqing Liu Jun Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期579-608,共30页
With the rapid development of portable technology,lithium batteries have emerged as potential candidates for high-performance energy storage systems owing to their high energy density and cycling stability.Among the k... With the rapid development of portable technology,lithium batteries have emerged as potential candidates for high-performance energy storage systems owing to their high energy density and cycling stability.Among the key components of a lithium battery system,the separator plays a critical role as it directly influences the battery performance benchmark(cycling performance and safety).However,traditional polyolefin separators(polypropylene/polyethylene)are unable to meet the demands of highperformance and safer battery systems due to their poor electrolyte compatibility,thermal runaways,and ultimate growth of dendrites.In contrast,membranes fabricated using polybenzimidazole(PBI)exhibit excellent electrolyte wettability and outstanding thermal dimensional stability,thus holding great potential as separators for high-performance and high-safety batteries.In this paper,we present a comprehensive review of the general requirements for separators,synthesis technology for separators,and research trends focusing PBI membranes in lithium batteries to alleviate the current commercial challenges faced by conventional polyolefin separators.In addition,we discuss the future development direction for PBI battery separators by considering various factors such as production cost,ecological footprint,preparation technology,and battery component compatibility.By exploring these perspectives,we aim to promote the continued application and exploration of PBI-based materials to advance lithium battery technology. 展开更多
关键词 Lithium batteries SEPARATORS Porous separators Polybenzimidazole membrane
下载PDF
New insight into the role of exosomes in idiopathic membrane nephropathy
9
作者 JIANHONG LIU KAI HE +1 位作者 HAN WANG XIAOHONG CHENG 《BIOCELL》 SCIE 2024年第1期21-32,共12页
Exosomes,nanoscale extracellular vesicles(EVs)derived from the invagination of the endosomal membrane,are secreted by a majority of cell types.As carriers of DNA,mRNA,proteins,and microRNAs,exosomes are implicated in ... Exosomes,nanoscale extracellular vesicles(EVs)derived from the invagination of the endosomal membrane,are secreted by a majority of cell types.As carriers of DNA,mRNA,proteins,and microRNAs,exosomes are implicated in regulating biological activities under physiological and pathological conditions.Kidney-derived exosomes,which vary in origin and function,may either contribute to the pathogenesis of disease or represent a potential therapeutic resource.Membranous nephropathy(MN),an autoimmune kidney disease characterized by glomerular damage,is a predominant cause of nephrotic syndrome.Notably,MN,especially idiopathic membranous nephropathy(IMN),often results in end-stage renal disease(ESRD),affecting approximately 30%of patients and posing a considerable economic challenge to healthcare systems.Despite substantial research,therapeutic options remain ineffective at halting IMN progression,underscoring the urgent need for innovative strategies.Emerging evidence has implicated exosomes in IMN’s pathophysiology;Providing a fresh perspective for the discovery of novel biomarkers and therapeutic strategies.This review aims to scrutinize recent developments in exosome-related mechanisms in IMN and evaluate their potential as promising therapeutic targets and diagnostic biomarkers,with the hope of catalyzing further investigations into the utility of exosomes in MN,particularly IMN,ultimately contributing to improved patient outcomes in these challenging disease settings. 展开更多
关键词 EXOSOMES Biomarkers Membranous nephropathy Therapeutic targets
下载PDF
Textured Asymmetric Membrane Electrode Assemblies of Piezoelectric Phosphorene and Ti_(3)C_(2)T_(x)MXene Heterostructures for Enhanced Electrochemical Stability and Kinetics in LIBs
10
作者 Yihui Li Juan Xie +10 位作者 Ruofei Wang Shugang Min Zewen Xu Yangjian Ding Pengcheng Su Xingmin Zhang Liyu Wei Jing‑Feng Li Zhaoqiang Chu Jingyu Sun Cheng Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期394-414,共21页
Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion... Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs.By contrast,the exfoliated two-dimensional phosphorene owns negligible volume variation,and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics,while its positive influence has not been discussed yet.Herein,a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage.The experimental and simulation analysis reveals that the embedded phosphorene nanosheets not only provide abundant active sites for Li-ions,but also endow the nanocomposite with favorable piezoelectricity,thus promoting the Li-ion transfer kinetics by generating the piezoelectric field serving as an extra accelerator.By waltzing with the MXene framework,the optimized electrode exhibits enhanced kinetics and stability,achieving stable cycling performances for 1,000 cycles at 2 A g^(-1),and delivering a high reversible capacity of 524 m Ah g^(-1)at-20℃,indicating the positive influence of the structural merits of self-assembled nanopiezocomposites on promoting stability and kinetics. 展开更多
关键词 Phosphorene Nanopiezocomposite Piezo-electrochemical coupling membrane electrode assembly Lithium-ion storage
下载PDF
Development of advanced anion exchange membrane from the view of the performance of water electrolysis cell
11
作者 Chao Liu Zhen Geng +6 位作者 Xukang Wang Wendong Liu Yuwei Wang Qihan Xia Wenbo Li Liming Jin Cunman Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期348-369,I0009,共23页
Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t... Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed. 展开更多
关键词 HYDROGEN Water electrolysis Anion exchange membrane Electrolysis cell
下载PDF
Diphylleia Grayi-Inspired Intelligent Temperature-Responsive Transparent Nanofiber Membranes
12
作者 Cengceng Zhao Gaohui Liu +6 位作者 Yanyan Lin Xueqin Li Na Meng Xianfeng Wang Shaoju Fu Jianyong Yu Bin Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期67-78,共12页
Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a ... Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a great challenge due to the enormous reflection and incredibly poor transmission generated by the nanofiber-air interface. In this research, we report a general strategy for the preparation of flexible temperature-responsive transparent(TRT) membranes,which achieves a rapid transformation of NFMs from opaque to highly transparent under a narrow temperature window. In this process, the phase change material eicosane is coated on the surface of the polyurethane nanofibers by electrospray technology. When the temperature rises to 37 ℃, eicosane rapidly completes the phase transition and establishes the light transmission path between the nanofibers, preventing light loss from reflection at the nanofiber-air interface. The resulting TRT membrane exhibits high transmittance(> 90%), and fast response(5 s). This study achieves the first TRT transition of NFMs, offering a general strategy for building highly transparent nanofiber materials, shaping the future of next-generation intelligent temperature monitoring, anti-counterfeiting measures, and other high-performance devices. 展开更多
关键词 BIOMIMETIC TRANSPARENT Nanofibrous membrane Temperature response Phase change materials
下载PDF
Flower-like tin oxide membranes with robust three-dimensional channels for efficient removal of iron ions from hydrogen peroxide
13
作者 Risheng Shen Shilong Li +3 位作者 Yuqing Sun Yuan Bai Jian Lu Wenheng Jing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期1-7,共7页
Membrane technology has become the mainstream process for the production of electronic grade hydrogen peroxide(H_(2)O_(2)).But due to the oxidation degradation of the organic membranes(e.g.polyamide)by the strong oxid... Membrane technology has become the mainstream process for the production of electronic grade hydrogen peroxide(H_(2)O_(2)).But due to the oxidation degradation of the organic membranes(e.g.polyamide)by the strong oxidative radicals(e.g.OH)generated via the activation of H_(2)O_(2)by iron ions(Fe^(3+)),the short effective lifetime of membranes remains a challenge.Inorganic nano tin oxide(SnO_(2))has great potential for the removal of Fe^(3+)in strongly oxidative H_(2)O_(2)because of its ability to stabilize H2O_(2)and preferentially adsorb Fe^(3+).Herein,we have designed for the first time a flower-like robust SnO_(2)membrane on the ceramic support by in situ template-free one-step hydrothermal method.The three-dimensional loose pore structure in the membrane built by interlacing SnO_(2)nanosheets endows the SnO_(2)membrane with a high specific surface area and abundant adsorption sites(AOH).Based on the coordination complexation and electrostatic attraction between the SnO_(2)surface and Fe^(3+),the membrane shows a high Fe3+removal efficiency(83%)and permeability(24 L·m^(-2)·h^(-1)·MPa^(-1))in H_(2)O_(2).This study provides an innovative and simple approach to designing robust SnO_(2)membranes for highly efficient removal of Fe^(3+)in harsh environments,such as strong oxidation conditions. 展开更多
关键词 Hydrogen peroxide SnO_(2)membrane Adsorption HYDROTHERMAL
下载PDF
Biomaterial engineering strategies for modeling the Bruch's membrane in age-related macular degeneration
14
作者 Blanca Molins Andrea Rodríguez +1 位作者 Víctor Llorenç Alfredo Adán 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2626-2636,共11页
Age-related macular degeneration,a multifactorial inflammatory degenerative retinal disease,ranks as the leading cause of blindness in the elderly.Strikingly,there is a scarcity of curative therapies,especially for th... Age-related macular degeneration,a multifactorial inflammatory degenerative retinal disease,ranks as the leading cause of blindness in the elderly.Strikingly,there is a scarcity of curative therapies,especially for the atrophic advanced form of age-related macular degeneration,likely due to the lack of models able to fully recapitulate the native structure of the outer blood retinal barrier,the prime to rget tissue of age-related macular degeneration.Standard in vitro systems rely on 2D monocultures unable to adequately reproduce the structure and function of the outer blood retinal barrier,integrated by the dynamic interaction of the retinal pigment epithelium,the Bruch's membrane,and the underlying choriocapillaris.The Bruch's membrane provides structu ral and mechanical support and regulates the molecular trafficking in the outer blood retinal barrier,and therefo re adequate Bruch's membrane-mimics are key for the development of physiologically relevant models of the outer blood retinal barrie r.In the last years,advances in the field of biomaterial engineering have provided novel approaches to mimic the Bruch's membrane from a variety of materials.This review provides a discussion of the integrated properties and function of outer blood retinal barrier components in healt hy and age-related macular degeneration status to understand the requirements to adequately fabricate Bruch's membrane biomimetic systems.Then,we discuss novel materials and techniques to fabricate Bruch's membrane-like scaffolds for age-related macular degeneration in vitro modeling,discussing their advantages and challenges with a special focus on the potential of Bruch's membrane-like mimics based on decellularized tissue. 展开更多
关键词 age-related macular degeneration Bruch's membrane DECELLULARIZATION retinal pigment epithelium SCAFFOLD
下载PDF
High performance photodegradation resistant PVA@TiO_(2)/carboxyl-PES self-healing reactive ultrafiltration membrane
15
作者 Yu Liang Yuanfang Fan +5 位作者 Zhongmin Su Mingxin Huo Xia Yang Hongliang Huo Chi Wang Zhi Geng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期31-39,共9页
The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Never... The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Nevertheless,the self-cleaning process may accelerate membrane aging.Addressing these concerns,we present an innovative design concept for composite self-healing materials based on self-cleaning UF membranes.To begin,TiO_(2)nanoparticles were incorporated into the polymer molecular structure via molecular design,resulting in the synthesis of TiO_(2)/carboxyl-polyether sulfone(PES)hybrid materials.Subsequently,the nonsolvent-induced phase inversion technique was employed to prepare a novel of UF membrane.Lastly,a polyvinyl alcohol(PVA)hydrogel coating was applied to the hybrid UF membrane surface to create PVA@TiO_(2)/carboxyl-PES self-healing reactive UF membranes.By establishing a covalent bond,the TiO_(2)nanoparticles were effectively and uniformly dispersed within the UF membrane,leading to exceptional self-cleaning properties.Furthermore,the water-absorbing and swelling properties of PVA hydrogel,along with its capacity to form hydrogen bonds with water molecules,resulted in UF membranes with improved hydrophilicity and active self-healing abilities.The results demonstrated that the water contact angle of PVA@5%TiO_(2)/carboxyl-PES UF membrane was 43.1°.Following a 1-h exposure to simulated solar exposure,the water flux recovery ratio increased from 48.16%to 81.03%.Moreover,even after undergoing five cycles of 12-h simulated sunlight exposure,the UF membranes exhibited a consistent retention rate of over 97%,thus fully demonstrating their exceptional self-cleaning,antifouling,and selfhealing capabilities.We anticipate that the self-healing reactive UF membrane system will serve as a pioneering and comprehensive solution for the self-cleaning antifouling challenges encountered in UF membranes while also effectively mitigating the aging effects of reactive UF membranes. 展开更多
关键词 Ultrafiltration membrane SELF-CLEANING SELF-HEALING Poly(aryl ether sulfone)
下载PDF
Analytical evaluation of steady-state solute distribution in through- diffusion and membrane behavior test under non-perfectly flushing boundary conditions
16
作者 Guannian Chen Yuchao Li +1 位作者 Kristin MSample-Lord Shan Tong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期258-267,共10页
The through-diffusion and membrane behavior testing procedure using a closed-system apparatus has been widely used for concurrent measurement of diffusion and membrane efficiency coefficients of low-permeability clay-... The through-diffusion and membrane behavior testing procedure using a closed-system apparatus has been widely used for concurrent measurement of diffusion and membrane efficiency coefficients of low-permeability clay-based barrier materials.However,the common assumption of perfectly flushing conditions at the specimen boundaries could induce errors in analyses of the diffusion coefficients and membrane efficiencies.In this study,an innovative pseudo three-dimensional(3D)analytical method was proposed to evaluate solute distribution along the boundary surfaces of the soil-porous disks system,considering the non-perfectly flushing conditions.The results were consistent with numerical models under two scenarios considering different inflow/outflow positions.The proposed model has been demonstrated to be an accurate and reliable method to estimate solute distributions along the bound-aries.The calculated membrane efficiency coefficient and diffusion coefficient based on the proposed analytical method are more accurate,resulting in up to 50%less relative error than the traditional approach that adopts the arithmetic mean value of the influent and effluent concentrations.The retar-dation factor of the clay specimen also can be calculated with a revised cumulative mass approach.Finally,the simulated transient solute transport matched with experimental data from a multi-stage through-diffusion and membrane behavior test,validating the accuracy of the proposed method. 展开更多
关键词 Diffusion testing membrane behavior Coupled transport Clay barrier Transport modeling
下载PDF
Sustained release of vascular endothelial growth factor A and basic fibroblast growth factor from nanofiber membranes reduces oxygen/glucose deprivation-induced injury to neurovascular units
17
作者 Yifang Wu Jun Sun +2 位作者 Qi Lin Dapeng Wang Jian Hai 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期887-894,共8页
Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor(VEGFA/b FGF)expression in the penumbra of cerebral ischemia can increase vascular volume,reduce lesion volume,and enhance neural cell... Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor(VEGFA/b FGF)expression in the penumbra of cerebral ischemia can increase vascular volume,reduce lesion volume,and enhance neural cell proliferation and differentiation,thereby exerting neuroprotective effects.However,the beneficial effects of endogenous VEGFA/b FGF are limited as their expression is only transiently increased.In this study,we generated multilayered nanofiber membranes loaded with VEGFA/b FGF using layer-by-layer self-assembly and electrospinning techniques.We found that a membrane containing 10 layers had an ideal ultrastructure and could efficiently and stably release growth factors for more than 1 month.This 10-layered nanofiber membrane promoted brain microvascular endothelial cell tube formation and proliferation,inhibited neuronal apoptosis,upregulated the expression of tight junction proteins,and improved the viability of various cellular components of neurovascular units under conditions of oxygen/glucose deprivation.Furthermore,this nanofiber membrane decreased the expression of Janus kinase-2/signal transducer and activator of transcription-3(JAK2/STAT3),Bax/Bcl-2,and cleaved caspase-3.Therefore,this nanofiber membrane exhibits a neuroprotective effect on oxygen/glucose-deprived neurovascular units by inhibiting the JAK2/STAT3 pathway. 展开更多
关键词 brain ischemia brain microvascular endothelial cell nanofiber membrane neurovascular unit
下载PDF
Durable poly(binaphthyl-co-p-terphenyl piperidinium)-based anion exchange membranes with dual side chains
18
作者 Weiting Gao Xuelang Gao +2 位作者 Qiugen Zhang Aimei Zhu Qinglin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期324-335,I0008,共13页
Building well-developed ion-conductive highways is highly desirable for anion exchange membranes(AEMs).Grafting side chain is a highly effective approach for constructing a well-defined phaseseparated morphological st... Building well-developed ion-conductive highways is highly desirable for anion exchange membranes(AEMs).Grafting side chain is a highly effective approach for constructing a well-defined phaseseparated morphological structure and forming unblocked ion pathways in AEMs for fast ion transport.Fluorination of side chains can further enhance phase separation due to the superhydrophobic nature of fluorine groups.However,their electronic effect on the alkaline stability of side chains and membranes is rarely reported.Here,fluorine-containing and fluorine-free side chains are introduced into the polyaromatic backbone in proper configuration to investigate the impact of the fluorine terminal group on the stability of the side chains and membrane properties.The poly(binaphthyl-co-p-terphenyl piperidinium)AEM(QBNp TP)has the highest molecular weight and most dimensional stability due to its favorable backbone arrangement among ortho-and meta-terphenyl based AEMs.Importantly,by introducing both a fluorinated piperidinium side chain and a hexane chain into the p-terphenyl-based backbone,the prepared AEM(QBNp TP-QFC)presents an enhanced conductivity(150.6 m S cm^(-1))and a constrained swelling at 80℃.The electronic effect of fluorinated side chains is contemplated by experiments and simulations.The results demonstrate that the presence of strong electro-withdrawing fluorine groups weakens the electronic cloud of adjacent C atoms,increasing OH^(-)attack on the C atom and improving the stability of piperidinium cations.Hence QBNp TP-QFC possesses a robust alkaline stability at 80℃(95.3%conductivity retention after testing in 2 M Na OH for 2160 h).An excellent peak power density of 1.44 W cm^(-2)and a remarkable durability at 80℃(4.5%voltage loss after 100 h)can be observed. 展开更多
关键词 Anion exchange membranes Backbone structure Fluorinated side chain Alkaline stability
下载PDF
Recent progress in ternary mixed matrix membranes for CO_(2) separation
19
作者 Zikang Qin Yulei Ma +13 位作者 Jing Wei Hongfang Guo Bangda Wang Jing Deng Chunhai Yi Nanwen Li Shouliang Yi Yi Deng Wentao Du Jian Shen Wenju Jiang Lu Yao Lin Yang Zhongde Dai 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期831-858,共28页
Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,s... Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed. 展开更多
关键词 CO_(2) separation Mixed matrix membranes Ternary phase
下载PDF
Designing Membrane Electrode Assembly for Electrochemical CO_(2)Reduction:a Review
20
作者 Xuerong Wang Shulin Zhao +4 位作者 Tao Guo Luyao Yang Qianqian Zhao Yuping Wu Yuhui Chen 《Transactions of Tianjin University》 EI CAS 2024年第2期117-129,共13页
Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in explo... Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in exploring the CO_(2) RR performance and mechanism because of the rational design of electrolyzer systems, such as H-cells, flow cells, and catalysts. Considering the future development direction of this technology and large-scale application needs, membrane electrode assembly (MEA) systems can improve energy use efficiency and achieve large-scale CO_(2) conversion, which is considered the most promising technology for industrial applications. This review will concentrate on the research progress and present situation of the MEA component structure. This paper begins with the composition and construction of a gas diff usion electrode. Then, the application of ion-exchange membranes in MEA is introduced. Furthermore, the eff ects of pH and the anion and cation of the anolyte on MEA performance are explored. Additionally, we present the anode reaction type in MEA. Finally, the challenges in this field are summarized, and upcoming trends are projected. This review should offer researchers a clearer picture of MEA systems and provide important, timely, and valuable insights into rational electrolyzer design to facilitate further development of CO_(2) electrochemical reduction. 展开更多
关键词 CO_(2)reduction ELECTROCATALYSIS membrane electrode assembly
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部