Implant-associated Staphylococcus aureus(S.aureus)osteomyelitis is a severe challenge in orthopedics.While antibiotic-loaded bone cement is a standardized therapeutic approach for S.aureus osteomyelitis,it falls short...Implant-associated Staphylococcus aureus(S.aureus)osteomyelitis is a severe challenge in orthopedics.While antibiotic-loaded bone cement is a standardized therapeutic approach for S.aureus osteomyelitis,it falls short in eradicating Staphylococcus abscess communities(SACs)and bacteria within osteocyte-lacuna canalicular network(OLCN)and repairing bone defects.To address limitations,we developed a borosilicate bioactive glass(BSG)combined with ferroferric oxide(Fe_(3)O_(4))magnetic scaffold to enhance antibacterial efficacy and bone repair capabilities.We conducted comprehensive assessments of the osteoinductive,immunomodulatory,antibacterial properties,and thermal response of this scaffold,with or without an alternating magnetic field(AMF).Utilizing a well-established implant-related S.aureus tibial infection rabbit model,we evaluated its antibacterial performance in vivo.RNA transcriptome sequencing demonstrated that BSG+5%Fe_(3)O_(4)enhanced the immune response to bacteria and promoted osteogenic differentiation and mineralization of MSCs.Notably,BSG+5%Fe_(3)O_(4)upregulated gene expression of NOD-like receptor and TNF pathway in MSCs,alongside increased the expression of osteogenic factors(RUNX2,ALP and OCN)in vitro.Flow cytometry on macrophage exhibited a polarization effect towards M2,accompanied by upregulation of anti-inflammatory genes(TGF-β1 and IL-1Ra)and downregulation of pro-inflammatory genes(IL-6 and IL-1β)among macrophages.In vivo CT imaging revealed the absence of osteolysis and periosteal response in rabbits treated with BSG+5%Fe_(3)O_(4)+AMF at 42 days.Histological analysis indicated complete controls of SACs and bacteria within OLCN by day 42,along with new bone formation,signifying effective control of S.aureus osteomyelitis.Further investigations will focus on the in vivo biosafety and biological mechanism of this scaffold within infectious microenvironment.展开更多
Bioactive glasses(BG)play a vital role in angiogenesis and osteogenesis through releasing functional ions.However,the rapid ion release in the early stage will cause excessive accumulation of metal ions,which in turn ...Bioactive glasses(BG)play a vital role in angiogenesis and osteogenesis through releasing functional ions.However,the rapid ion release in the early stage will cause excessive accumulation of metal ions,which in turn leads to obvious cytotoxicity,long-term inflammation,and bone repair failure.Inspired by the vibration exciter,small extracellular vesicles(sEVs)obtained by treating mesenchymal stem cells with copper-doped bioactive glass(CuBG-sEVs),is prepared as a nano-vibration exciter.The nano-vibration exciter can convert the ion signals of CuBG into biochemical factor signals through hypoxia-inducible factor 1(HIF-1)signaling pathway and its activated autophagy,so as to better exert the osteogenic activity of BG.The results showed that CuBG extracts could significantly improve the enrichment of key miRNAs and increase the yield of CuBG-sEVs by activating HIF-1 signaling pathway and its activated autophagy.Cell experiments showed that CuBG-sEVs are favor to cell recruitment,vascularization and osteogenesis as the enrichment of key miRNAs.The animal experiments results showed that CuBG-sEVs stimulated angiogenesis mediated by CD31 and promoted bone regeneration by activating signaling pathways related to osteogenesis.These findings underscored the significant potential of sEVs as alternative strategies to better roles of BG.展开更多
The bioactive glass and related biomaterials have become increasingly popular, and have also attracted the research interest of many researchers in recent years due its special performance and tissue engineering appli...The bioactive glass and related biomaterials have become increasingly popular, and have also attracted the research interest of many researchers in recent years due its special performance and tissue engineering application. In this study, to create a material with a variety of properties Mg doped hollow bioactive glass (Mg-HBG) of 80SiO2-5P2O5-10CaO-5MgO system had been produced by using a sol-gel method. The porous structure nanoparticles were specifically made by employing the cetyltrimethylammonium bromide (CTAB) as a surfactant. Magnesium was selected as a doped material with HBG, because it is the most existing cations in the human body which helps for bone metabolism as well as it has antibacterial property. Based on different investigations resulted nanoparticle with the inclusion of the lower molar fractions magnesium has good tested result. For a drug model vancomycin hydrochloride (VAN) was used in this study and it has also good antibacterial activity effect. These findings help the possibility of using Mg-HBG nanoparticles to treat infectious bone abnormalities by demonstrating their compatibility with antibiotics, drug loading and release behavior.展开更多
The preferable mechanical properties of Mg alloys along with excellent compatibility with human bone have established their applicability as implant biomaterials.However,a higher corrosion/degradation rate of Mg alloy...The preferable mechanical properties of Mg alloys along with excellent compatibility with human bone have established their applicability as implant biomaterials.However,a higher corrosion/degradation rate of Mg alloys in body fluids limits its biomedical applications.In this direction,surface modification and coating are explored as appropriate strategies to mode the degradation rate of Mg alloys.The constituents of bioactive glass(BG)provide strength,bio-inertness and bone bonding capability.Hence,researchers have explored the coating of BG on Mg alloys and investigated chemical,mechanical and biological properties of the coated alloys.In this review,we have made an attempt to compile the literature works done on the coating of BG on Mg alloys and its features.Underlying interfacial aspects of the coated substrates towards the degradation behavior are highlighted.The way forward to further improve the coating characteristics of BG coated Mg alloys are remarked.展开更多
The biodegradation behavior of Mg,coated by polymethyl methacrylate as well as polymethyl methacrylate(PMMA)−bioactive glass(BG)composite was investigated.Electrophoretic deposition and dip coating techniques were ado...The biodegradation behavior of Mg,coated by polymethyl methacrylate as well as polymethyl methacrylate(PMMA)−bioactive glass(BG)composite was investigated.Electrophoretic deposition and dip coating techniques were adopted to prepare composite coating using a suspension of different percentages of the above two chemical materials.The deposited coatings were characterized using SEM,EDS,FTIR,and water contact angle measurements.Biodegradation behavior study of the coated Mg was performed using linear polarization,impedance spectroscopy,and immersion tests in simulated body fluid.The compact and homogeneous composite coating was developed as evidenced by electron microscopy results.The water contact angle measurement showed a 44°increase in the contact angle of the composite coated Mg compared to the uncoated one.The composite coating was covered by a bone-like hydroxyapatite layer after 336 h,indicating that the coating has an excellent in vitro bioactivity.The electrochemical testing results confirmed a significant reduction,96.9%,in the biodegradation rate of Mg coated with the composite prepared from 45 g/L PMMA+3.5 g/L 45S5 GB suspension compared to that of the uncoated one.Therefore,the composite coated Mg can be proposed as a promising material for biodegradable implant application.展开更多
The system of SiO2-CaO-P2O5 bioactive glasses (BG) were successfully synthesized by microemulsion approach. X-ray diffraction (XRD),scanning electron micro scopy(SEM) and energy dispersive X-ray (EDX) analyses...The system of SiO2-CaO-P2O5 bioactive glasses (BG) were successfully synthesized by microemulsion approach. X-ray diffraction (XRD),scanning electron micro scopy(SEM) and energy dispersive X-ray (EDX) analyses, transmission electron microscopy(TEM),Fourier transform infrared spectroscopy (FTIR), BET N2 gas adsorption analysis techniques were utilized in order to evaluate the phase composition, dimension, morphology, interconnectivity of pores and particle size of the synthesized BG respectiveely. The biocompatibility of BG was assessed by using dimethylthiazol diphenyl tetrazolium bromide (MTT).The BG scaffolds were implanted in rabbit mandibles and studied histologically.The results showed that the BG with a particle size less than 100 nm was prepared successfully. The measured BET specific surface area and pore volume was 113.9 m2/g and 0.28 cm3/g respectively. Cell cultures revealed that BG has been shown to have good biocompatibility and is also beneficial to the survival of Schwann cells, which can promote cell proliferation in vivo assay indicating that the BG can promote osteoconductivity.展开更多
Bioactive glasses have been developed for medical applications in the body for bone and tissue repair and regeneration. We have developed a borate-containing bioactive glass (13-93B3, referred to as B3), which is unde...Bioactive glasses have been developed for medical applications in the body for bone and tissue repair and regeneration. We have developed a borate-containing bioactive glass (13-93B3, referred to as B3), which is undergoing clinical trials to assess its wound-healing properties. To complement the healing properties of B3, metal ion dopants have been added to enhance its antimicrobial properties. Bioactive glasses doped with silver, gallium or iodine ions were found to have broad spectrum antimicrobial effects on clinically relevant bacteria including MRSA. While the B3 glass alone was sufficient to produce antibacterial effects on select bacteria, adding dopants enhanced the broad-spectrum antibacterial properties: Live-Dead staining fluorescence microscopy suggests cell membrane integrity is disrupted in gram positive bacteria exposed to the glass compounds, but not gram negative bacteria, indicating multiple mechanisms of action for each glass formulation.展开更多
Based on a series of newly developed bioactive glasses having suitable thermo-mechanical properties to allow application as fixation agents between bone and titanium alloy biomedical implants, the stress corrosion cra...Based on a series of newly developed bioactive glasses having suitable thermo-mechanical properties to allow application as fixation agents between bone and titanium alloy biomedical implants, the stress corrosion crack growth (SCCG) behavior of their interfaces with Ti6AI4V was investigated in simulated body fluid (SBF) with the objective of discerning the salient mechanisms of crack advance and to assess the reliability of the bonds. Results indicated that crack growth rates in Ti6AI4V/glass/Ti6AI4V sandwich specimens were nearly the same as or slightly lower than those in the bulk glasses at comparable stress intensities; indeed, cracks would prefer to propagate off the interface, suggesting that the Ti6AI4V/glass interface has relatively good crack-growth resistance. Mechanistically, interfacial crack growth appears to be controlled by the classic stress corrosion mechanisms for silicate glasses, with no discernible effect of bioactivity on the SCCG behavior being observed.展开更多
The effect of glass ionomer cement and resin-modified glass ionomer cement incorporated with chlorhexidine and bioactive glass on antimicrobial activity and physicochemical properties were investigated. The experiment...The effect of glass ionomer cement and resin-modified glass ionomer cement incorporated with chlorhexidine and bioactive glass on antimicrobial activity and physicochemical properties were investigated. The experimental results showed that groups incorporated with 1% chlorhexidine exhibited a significant reduction of optical density values of the bacterial suspension and increased the degradation of Streptococcus mutans biofilm. However, groups incorporated with 10% bioactive glass did not affect the optical density values and the biofilm formation. The mechanical properties of the materials and the polymerization were not influenced by the addition of chlorhexidine. Nevertheless, the compressive strength was lower when the materials were incorporated with bioactive glass. It can be concluded that glass ionomer cements incorporated with chlorhexidine can maintain its mechanical properties as well as reduce early S mutans biofilm formation. Controlled release/sustained release technology may be required to optimize the antibacterial activity of glass ionomer cements incorporated with bioactive glass.展开更多
In order to accelerate the chronic wounds healing, we investigated the healing effects of bioactive glass and Yuunan baiyao ointments in streptozotocin-induced diabetic rats. The ointments were prepared by mixing 45S5...In order to accelerate the chronic wounds healing, we investigated the healing effects of bioactive glass and Yuunan baiyao ointments in streptozotocin-induced diabetic rats. The ointments were prepared by mixing 45S5 bioactive glass powder (16% weight) with Vaseline and different weight percentages of Yurman baiyao. Full-thickness defect wounds were created on the back of 130 SD rats and were randomly divided into 8 groups. The wound healing rates were calculated at 4, 7, 10, 14 and 21 days after surgery. The samples were harvested for further observations. Considering the wound closure rate, group 6 (with 5% Yuunan baiyao) has better wound healing performance than other diabetic groups. The lower inflammatory response was observed by gross observation and confirmed by the results of H&E staining and TEM observation. Besides, the proliferation of fibroblasts, the formation of granulation tissue, as well as the vascularization, were improved in group 6 compared to other diabetic groups. All results suggest that bioactive glass and Yunnan baiyao ointments can accelerate the recovery of diabetes-impaired skin wounds, and comparing to other diabetic groups, group 6 (with 5% Yunnan baiyao) has better healing effect.展开更多
Mesoporous bioactive glasses(MBGs),which belong to the category of modern porous nanomaterials,have garnered significant attention due to their impressive biological activities,appealing physicochemical properties,and...Mesoporous bioactive glasses(MBGs),which belong to the category of modern porous nanomaterials,have garnered significant attention due to their impressive biological activities,appealing physicochemical properties,and desirable morphological features.They hold immense potential for utilization in diverse fields,including adsorption,separation,catalysis,bioengineering,and medicine.Despite possessing interior porous structures,excellent morphological characteristics,and superior biocompatibility,primitive MBGs face challenges related to weak encapsulation efficiency,drug loading,and mechanical strength when applied in biomedical fields.It is important to note that the advantageous attributes of MBGs can be effectively preserved by incorporating supramolecular assemblies,miscellaneous metal species,and their conjugates into the material surfaces or intrinsic mesoporous networks.The innovative advancements in these modified colloidal inorganic nanocarriers inspire researchers to explore novel applications,such as stimuli-responsive drug delivery,with exceptional in-vivo performances.In view of the above,we outline the fabrication process of calcium-silicon-phosphorus based MBGs,followed by discussions on their significant progress in various engineered strategies involving surface functionalization,nanostructures,and network modification.Furthermore,we emphasize the recent advancements in the textural and physicochemical properties of MBGs,along with their theranostic potentials in multiple cancerous and non-cancerous diseases.Lastly,we recapitulate compelling viewpoints,with specific considerations given from bench to bedside.展开更多
Over the past two decades, the CICECO-hub scientists have devoted substantial efforts to advancing bioactiveinorganic materials based on calcium phosphates and alkali-free bioactive glasses. A key focus has been thede...Over the past two decades, the CICECO-hub scientists have devoted substantial efforts to advancing bioactiveinorganic materials based on calcium phosphates and alkali-free bioactive glasses. A key focus has been thedeliberate incorporation of therapeutic ions like Mg, Sr, Zn, Mn, or Ga to enhance osteointegration and vascularization,confer antioxidant properties, and impart antimicrobial effects, marking significant contributions tothe field of biomaterials and bone tissue engineering. Such an approach is expected to circumvent the uncertaintiesposed by methods relying on growth factors, such as bone morphogenetic proteins, parathyroidhormone, and platelet-rich plasma, along with their associated high costs and potential adverse side effects. Thiscomprehensive overview of CICECO-hub’s significant contributions to the forefront inorganic biomaterials acrossall research aspects and dimensionalities (powders, granules, thin films, bulk materials, and porous structures),follows a unified approach rooted in a cohesive conceptual framework, including synthesis, characterization, andtesting protocols. Tangible outcomes [injectable cements, durable implant coatings, and bone graft substitutes(scaffolds) featuring customized porous architectures for implant fixation, osteointegration, accelerated boneregeneration in critical-sized bone defects] were achieved. The manuscript showcases specific biofunctionalexamples of successful biomedical applications and effective translations to the market of bone grafts foradvanced therapies.展开更多
Objective:To investigate the effect and mechanism of bioactive glass1393 on wound healing in mice with burn injuries.Methods:A benchtop temperature-controlled scald instrument was used to establish a mouse burn wound ...Objective:To investigate the effect and mechanism of bioactive glass1393 on wound healing in mice with burn injuries.Methods:A benchtop temperature-controlled scald instrument was used to establish a mouse burn wound model,which was divided into an injury group(simple scald group)and a bioactive glass 1393treatment group.The wound healing of burn injuries in mice was observed at different times after the operation,and the formation of granulation tissue,collagen deposition and tissue proliferation in the wounds were observed by HE staining,Masson staining and Ki67 staining,and the levels of apoptosis-related proteins and the expression of wnt3a/β-catenin signaling pathway were detected in the wounds by Western blot.Results:Compared with the injury group,the bioactive glass 1393 group accelerated burn wound healing and promoted granulation tissue formation,collagen deposition,and cell proliferation.In addition,compared with the injury group,the bioactive glass 1393 group promoted the expression of Bcl-2 protein,inhibited the expression of Bax protein and up-regulated the expression of Wnt3a andβ-catenin protein.Conclusion:Bioactive glass 1393 promotes burn wound healing in mice by inhibiting apoptosis through modulation of wnt3a/β-catenin signaling pathway.展开更多
Bone augmentation materials usually cannot provide enough new bone for dental implants due to the material degradation and mucosal pressure.The use of hydrogels with self-swelling properties may provide a higher bone ...Bone augmentation materials usually cannot provide enough new bone for dental implants due to the material degradation and mucosal pressure.The use of hydrogels with self-swelling properties may provide a higher bone augmentation,although swelling is generally considered to be a disadvantage in tissue engineering.Herein,a double-crosslinked gelatin-hyaluronic acid hydrogels(GH)with self-swelling properties were utilized.Meanwhile,niobium doped bioactive glasses(NbBG)was dispersed in the hydrogel network to prepare the GH-NbBG hydrogel.The composite hydrogel exhibited excellent biocompatibility and the addition of NbBG significantly improved the mechanical properties of the hydrogel.In vivo results found that GH-NbBG synergistically promoted angiogenesis and increased bone augmentation by self-swelling at the early stage of implantation.In addition,at the late stage after implantation,GH-NbBG significantly promoted new bone formation by activating RUNX2/Bglap signaling pathway.Therefore,this study reverses the self-swelling disadvantage of hydrogels into advantage and provides novel ideas for the application of hydrogels in bone augmentation.展开更多
Out of the wide range of calcium phosphate(CaP)biomaterials,calcium phosphate bone cements(CPCs)have attracted increased attention since their discovery in the 1980s due to their valuable properties such as bioactivit...Out of the wide range of calcium phosphate(CaP)biomaterials,calcium phosphate bone cements(CPCs)have attracted increased attention since their discovery in the 1980s due to their valuable properties such as bioactivity,osteoconductivity,injectability,hardening ability through a low-temperature setting reaction and moldability.Thereafter numerous researches have been performed to enhance the properties of CPCs.Nonetheless,low mechanical performance of CPCs limits their clinical application in load bearing regions of bone.Also,the in vivo resorption and replacement of CPC with new bone tissue is still controversial,thus further improvements of high clinical importance are required.Bioactive glasses(BGs)are biocompatible and able to bond to bone,stimulating new bone growth while dissolving over time.In the last decades extensive research has been performed analyzing the role of BGs in combination with different CaPs.Thus,the focal point of this review paper is to summarize the available research data on how injectable CPC properties could be improved or affected by the addition of BG as a secondary powder phase.It was found that despite the variances of setting time and compressive strength results,desirable injectable properties of bone cements can be achieved by the inclusion of BGs into CPCs.The published data also revealed that the degradation rate of CPCs is significantly improved by BG addition.Moreover,the presence of BG in CPCs improves the in vitro osteogenic differentiation and cell response as well as the tissue-material interaction in vivo.展开更多
TypeⅡdiabetes mellitus(TIIDM)remains a challenging clinical issue for both dentists and orthopedists.By virtue of persistent hyperglycemia and altered host metabolism,the pathologic diabetic micromilieu with chronic ...TypeⅡdiabetes mellitus(TIIDM)remains a challenging clinical issue for both dentists and orthopedists.By virtue of persistent hyperglycemia and altered host metabolism,the pathologic diabetic micromilieu with chronic inflammation,advanced glycation end products accumulation,and attenuated biomineralization severely impairs bone regeneration efficiency.Aiming to“remodel”the pathologic diabetic micromilieu,we 3D-printed bioscaffolds composed of Sr-containing mesoporous bioactive glass nanoparticles(Sr-MBGNs)and gelatin methacrylate(GelMA).Sr-MBGNs act as a biomineralization precursor embedded in the GelMA-simulated extracellular matrix and release Sr,Ca,and Si ions enhancing osteogenic,angiogenic,and immunomodulatory properties.In addition to angiogenic and anti-inflammatory outcomes,this innovative design reveals that the nanocomposites can modulate extracellular matrix reconstruction and simulate biomineralization by activating lysyl oxidase to form healthy enzymatic crosslinked collagen,promoting cell focal adhesion,modulating osteoblast differentiation,and boosting the release of OCN,the noncollagenous proteins(intrafibrillar mineralization dependent),and thus orchestrating osteogenesis through the Kindlin-2/PTH1R/OCN axis.This 3D-printed bioscaffold provides a multifunctional biomineralization-inspired system that remodels the“barren”diabetic microenvironment and sheds light on the new bone regeneration approaches for TIIDM.展开更多
Bone defect repair remains a troubling problem in clinical orthopedics,which involves complex biological processes.Calcium phosphates(CaPs)have been widely used owing to their advantage of biocompatibility.However,sin...Bone defect repair remains a troubling problem in clinical orthopedics,which involves complex biological processes.Calcium phosphates(CaPs)have been widely used owing to their advantage of biocompatibility.However,single component and traditional fabrication methods cannot meet the requirements of bioadaptability during the tissue repair process.In this work,0%,5%,15%,25%wt%of BG-TCP(bioactive glass-β-tricalcium phosphate)bioresorbable scaffolds with triply-periodic minimal surfaces(TPMS)-gyroid structure were prepared by the stereolithography(SLA)technology.TPMS-gyroid structure provided an accurate mimicry of natural bone tissue,and the incorporation of BG improved the compressive strength ofβ-TCP matrix,matched with the defective bone(2–12 MPa).Rapid but tunable degradation kinetics(compared with pure TCP)of BG enabled the BG-TCP system to sh8ow adaptable biodegradability to new bone generation.In vitro studies have shown that composite scaffolds have better mechanical properties(7.82 MPa),and can released appropriate contents of calcium,phosphorous,and magnesium ions,which promoted the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)and angiogenic ability of endothelial progenitor cells(EPCs).Moreover,the in vivo assessment of rat femoral defect revealed that TPMS-structure-based TCP scaffolds accelerated bone ingrowth to the pores.Moreover,BG-TCP scaffolds,especially 15BG-TCP group,exhibited superior bone regeneration capacity at both 4 and 8 weeks,which achieved an optimal match between the rate of material degradation and tissue regeneration.In summary,this study provides insight into influences of bioactive components(BG)and bionic structures(TPMS)on the physical-chemical properties of materials,cell behavior and tissue regeneration,which offers a promising strategy to design bioadaptive ceramic scaffolds in the clinical treatment of bone defects.展开更多
Current treatments for full-thickness skin injuries are still unsatisfactory due to the lack of hierarchically stimulated dressings that can integrate the rapid hemostasis,inflammation regulation,and skin tissue remod...Current treatments for full-thickness skin injuries are still unsatisfactory due to the lack of hierarchically stimulated dressings that can integrate the rapid hemostasis,inflammation regulation,and skin tissue remodeling into the one system instead of single-stage boosting.In this work,a multilayer-structured bioactive glass nanopowder(BGN@PTE)is developed by coating the poly-tannic acid andε-polylysine onto the BGN via facile layer-by-layer assembly as an integrative and multilevel dressing for the sequential management of wounds.In comparison to BGN and poly-tannic acid coated BGN,BGN@PTE exhibited the better hemostatic performance because of its multiple dependent approaches to induce the platelet adhesion/activation,red blood cells(RBCs)aggregation and fibrin network formation.Simultaneously,the bioactive ions from BGN facilitate the regulation of the inflammatory response while the poly-tannic acid and antibacterialε-polylysine prevent the wound infection,promoting the wound healing during the inflammatory stage.In addition,BGN@PTE can serve as a reactive oxygen species scavenger,alleviate the oxidation stress in wound injury,induce the cell migration and angiogenesis,and promote the proliferation stage of wound repair.Therefore,BGN@PTE demonstrated the significantly higher wound repair capacity than the commercial bioglass dressing Dermlin™.This multifunctional BGN@PTE is a potentially valuable dressing for full-thickness wound management and may be expected to extend to the other wounds therapy.展开更多
Bioactive glasses(BG)have been generally used in bone defects repair for its good osteoinductivity and osteoconductivity.However,the early angiogenesis of BG in the repair of large-sized bone defects may not be suffic...Bioactive glasses(BG)have been generally used in bone defects repair for its good osteoinductivity and osteoconductivity.However,the early angiogenesis of BG in the repair of large-sized bone defects may not be sufficient enough to support new bone formation,resulting in the failure of bone repair.Photobiomodulation(PBM)therapy,which is superior on promoting early angiogenesis,may contribute to the angiogenesis of BG and further enhance the repair of bone defects.Therefore,we applied BG and PBM in combination and preliminarily investigated their additive effects on bone regeneration both in vitro and in vivo.The in vitro results revealed that BG combined with PBM remarkably enhanced human bone marrow mesenchymal stem cells proliferation,osteogenic-related genes expression and mineralization,which was better than applying BG or PBM respectively.For in vivo studies,the histological staining results showed that BG induced new bone formation in the interior of defects and promoted new bone reconstruction at 6 weeks post-operation.The micro-computed tomography results further confirmed that BG combined with PBM accelerated bone formation and maturation,improved the speed and quality of bone regeneration,and promoted bone repair.In conclusion,with the optimum BG and PBM parameters,BG combined with PBM generated additive effects on promoting bone regeneration.展开更多
Calcium phosphate cements (CPC) are currently widely used bone replacement materials with excellent bioactivity, but have considerable disadvantages like slow degradation. For critical-sized defects, however, an impro...Calcium phosphate cements (CPC) are currently widely used bone replacement materials with excellent bioactivity, but have considerable disadvantages like slow degradation. For critical-sized defects, however, an improved degradation is essential to match the tissue regeneration, especially in younger patients who are still growing. We demonstrate that a combination of CPC with mesoporous bioactive glass (MBG) particles led to an enhanced degradation in vitro and in a critical alveolar cleft defect in rats. Additionally, to support new bone formation the MBG was functionalized with hypoxia conditioned medium (HCM) derived from rat bone marrow stromal cells. HCM-functionalized scaffolds showed an improved cell proliferation and the highest formation of new bone volume. This highly flexible material system together with the drug delivery capacity is adaptable to patient specific needs and has great potential for clinical translation.展开更多
基金support from National Key R&D Program of China(2023YFC2416900and 2021YFC2400500)The International Postdoctoral Exchange Fellowship Program of Chongqing(2021JLPY004)+4 种基金The Fellowship of China Postdoctoral Science Foundation(2021M693758)National Natural Science Foundation of China(U22A20357,52072398and 32161160327)Natural Science Foundation Postdoctoral Science Foundation Project of Chongqing(cstc2021jcyj-bsh0019)Natural Science Foundation of Chongqing(cstc2021jcyj-msxmX0134)Shenzhen Science and Technology Program(JCYJ20230807140714030)。
文摘Implant-associated Staphylococcus aureus(S.aureus)osteomyelitis is a severe challenge in orthopedics.While antibiotic-loaded bone cement is a standardized therapeutic approach for S.aureus osteomyelitis,it falls short in eradicating Staphylococcus abscess communities(SACs)and bacteria within osteocyte-lacuna canalicular network(OLCN)and repairing bone defects.To address limitations,we developed a borosilicate bioactive glass(BSG)combined with ferroferric oxide(Fe_(3)O_(4))magnetic scaffold to enhance antibacterial efficacy and bone repair capabilities.We conducted comprehensive assessments of the osteoinductive,immunomodulatory,antibacterial properties,and thermal response of this scaffold,with or without an alternating magnetic field(AMF).Utilizing a well-established implant-related S.aureus tibial infection rabbit model,we evaluated its antibacterial performance in vivo.RNA transcriptome sequencing demonstrated that BSG+5%Fe_(3)O_(4)enhanced the immune response to bacteria and promoted osteogenic differentiation and mineralization of MSCs.Notably,BSG+5%Fe_(3)O_(4)upregulated gene expression of NOD-like receptor and TNF pathway in MSCs,alongside increased the expression of osteogenic factors(RUNX2,ALP and OCN)in vitro.Flow cytometry on macrophage exhibited a polarization effect towards M2,accompanied by upregulation of anti-inflammatory genes(TGF-β1 and IL-1Ra)and downregulation of pro-inflammatory genes(IL-6 and IL-1β)among macrophages.In vivo CT imaging revealed the absence of osteolysis and periosteal response in rabbits treated with BSG+5%Fe_(3)O_(4)+AMF at 42 days.Histological analysis indicated complete controls of SACs and bacteria within OLCN by day 42,along with new bone formation,signifying effective control of S.aureus osteomyelitis.Further investigations will focus on the in vivo biosafety and biological mechanism of this scaffold within infectious microenvironment.
基金supported by the National Key R&D Program of China(2023YFB3810200)the National Natural Science Foundation of China(Grant No.52272276,52073103,52203164)+2 种基金the Fundamental Research Funds for the Central Universities(No.2022ZYGXZR105)the Project funded by China Postdoctoral Science Foundation(No.2022M711183)the Science and Technology Planning Project of Guangzhou(2023A04J0971).
文摘Bioactive glasses(BG)play a vital role in angiogenesis and osteogenesis through releasing functional ions.However,the rapid ion release in the early stage will cause excessive accumulation of metal ions,which in turn leads to obvious cytotoxicity,long-term inflammation,and bone repair failure.Inspired by the vibration exciter,small extracellular vesicles(sEVs)obtained by treating mesenchymal stem cells with copper-doped bioactive glass(CuBG-sEVs),is prepared as a nano-vibration exciter.The nano-vibration exciter can convert the ion signals of CuBG into biochemical factor signals through hypoxia-inducible factor 1(HIF-1)signaling pathway and its activated autophagy,so as to better exert the osteogenic activity of BG.The results showed that CuBG extracts could significantly improve the enrichment of key miRNAs and increase the yield of CuBG-sEVs by activating HIF-1 signaling pathway and its activated autophagy.Cell experiments showed that CuBG-sEVs are favor to cell recruitment,vascularization and osteogenesis as the enrichment of key miRNAs.The animal experiments results showed that CuBG-sEVs stimulated angiogenesis mediated by CD31 and promoted bone regeneration by activating signaling pathways related to osteogenesis.These findings underscored the significant potential of sEVs as alternative strategies to better roles of BG.
文摘The bioactive glass and related biomaterials have become increasingly popular, and have also attracted the research interest of many researchers in recent years due its special performance and tissue engineering application. In this study, to create a material with a variety of properties Mg doped hollow bioactive glass (Mg-HBG) of 80SiO2-5P2O5-10CaO-5MgO system had been produced by using a sol-gel method. The porous structure nanoparticles were specifically made by employing the cetyltrimethylammonium bromide (CTAB) as a surfactant. Magnesium was selected as a doped material with HBG, because it is the most existing cations in the human body which helps for bone metabolism as well as it has antibacterial property. Based on different investigations resulted nanoparticle with the inclusion of the lower molar fractions magnesium has good tested result. For a drug model vancomycin hydrochloride (VAN) was used in this study and it has also good antibacterial activity effect. These findings help the possibility of using Mg-HBG nanoparticles to treat infectious bone abnormalities by demonstrating their compatibility with antibiotics, drug loading and release behavior.
文摘The preferable mechanical properties of Mg alloys along with excellent compatibility with human bone have established their applicability as implant biomaterials.However,a higher corrosion/degradation rate of Mg alloys in body fluids limits its biomedical applications.In this direction,surface modification and coating are explored as appropriate strategies to mode the degradation rate of Mg alloys.The constituents of bioactive glass(BG)provide strength,bio-inertness and bone bonding capability.Hence,researchers have explored the coating of BG on Mg alloys and investigated chemical,mechanical and biological properties of the coated alloys.In this review,we have made an attempt to compile the literature works done on the coating of BG on Mg alloys and its features.Underlying interfacial aspects of the coated substrates towards the degradation behavior are highlighted.The way forward to further improve the coating characteristics of BG coated Mg alloys are remarked.
文摘The biodegradation behavior of Mg,coated by polymethyl methacrylate as well as polymethyl methacrylate(PMMA)−bioactive glass(BG)composite was investigated.Electrophoretic deposition and dip coating techniques were adopted to prepare composite coating using a suspension of different percentages of the above two chemical materials.The deposited coatings were characterized using SEM,EDS,FTIR,and water contact angle measurements.Biodegradation behavior study of the coated Mg was performed using linear polarization,impedance spectroscopy,and immersion tests in simulated body fluid.The compact and homogeneous composite coating was developed as evidenced by electron microscopy results.The water contact angle measurement showed a 44°increase in the contact angle of the composite coated Mg compared to the uncoated one.The composite coating was covered by a bone-like hydroxyapatite layer after 336 h,indicating that the coating has an excellent in vitro bioactivity.The electrochemical testing results confirmed a significant reduction,96.9%,in the biodegradation rate of Mg coated with the composite prepared from 45 g/L PMMA+3.5 g/L 45S5 GB suspension compared to that of the uncoated one.Therefore,the composite coated Mg can be proposed as a promising material for biodegradable implant application.
基金Funded by Guangdong Science and Technology Tackling Project(No.2010B031100002)the Orientation of Lu'an Commissioned the West Anhui University Municipal Research Project(No.2011LW009)
文摘The system of SiO2-CaO-P2O5 bioactive glasses (BG) were successfully synthesized by microemulsion approach. X-ray diffraction (XRD),scanning electron micro scopy(SEM) and energy dispersive X-ray (EDX) analyses, transmission electron microscopy(TEM),Fourier transform infrared spectroscopy (FTIR), BET N2 gas adsorption analysis techniques were utilized in order to evaluate the phase composition, dimension, morphology, interconnectivity of pores and particle size of the synthesized BG respectiveely. The biocompatibility of BG was assessed by using dimethylthiazol diphenyl tetrazolium bromide (MTT).The BG scaffolds were implanted in rabbit mandibles and studied histologically.The results showed that the BG with a particle size less than 100 nm was prepared successfully. The measured BET specific surface area and pore volume was 113.9 m2/g and 0.28 cm3/g respectively. Cell cultures revealed that BG has been shown to have good biocompatibility and is also beneficial to the survival of Schwann cells, which can promote cell proliferation in vivo assay indicating that the BG can promote osteoconductivity.
文摘Bioactive glasses have been developed for medical applications in the body for bone and tissue repair and regeneration. We have developed a borate-containing bioactive glass (13-93B3, referred to as B3), which is undergoing clinical trials to assess its wound-healing properties. To complement the healing properties of B3, metal ion dopants have been added to enhance its antimicrobial properties. Bioactive glasses doped with silver, gallium or iodine ions were found to have broad spectrum antimicrobial effects on clinically relevant bacteria including MRSA. While the B3 glass alone was sufficient to produce antibacterial effects on select bacteria, adding dopants enhanced the broad-spectrum antibacterial properties: Live-Dead staining fluorescence microscopy suggests cell membrane integrity is disrupted in gram positive bacteria exposed to the glass compounds, but not gram negative bacteria, indicating multiple mechanisms of action for each glass formulation.
文摘Based on a series of newly developed bioactive glasses having suitable thermo-mechanical properties to allow application as fixation agents between bone and titanium alloy biomedical implants, the stress corrosion crack growth (SCCG) behavior of their interfaces with Ti6AI4V was investigated in simulated body fluid (SBF) with the objective of discerning the salient mechanisms of crack advance and to assess the reliability of the bonds. Results indicated that crack growth rates in Ti6AI4V/glass/Ti6AI4V sandwich specimens were nearly the same as or slightly lower than those in the bulk glasses at comparable stress intensities; indeed, cracks would prefer to propagate off the interface, suggesting that the Ti6AI4V/glass interface has relatively good crack-growth resistance. Mechanistically, interfacial crack growth appears to be controlled by the classic stress corrosion mechanisms for silicate glasses, with no discernible effect of bioactivity on the SCCG behavior being observed.
基金Funded by the National Natural Science Foundation of China (No.81070852)the Open Research Fund Program of Hubei-MOST KLOS & KLOBME (200903)the Science and Technology Project of Wuhan(201161038343-02)
文摘The effect of glass ionomer cement and resin-modified glass ionomer cement incorporated with chlorhexidine and bioactive glass on antimicrobial activity and physicochemical properties were investigated. The experimental results showed that groups incorporated with 1% chlorhexidine exhibited a significant reduction of optical density values of the bacterial suspension and increased the degradation of Streptococcus mutans biofilm. However, groups incorporated with 10% bioactive glass did not affect the optical density values and the biofilm formation. The mechanical properties of the materials and the polymerization were not influenced by the addition of chlorhexidine. Nevertheless, the compressive strength was lower when the materials were incorporated with bioactive glass. It can be concluded that glass ionomer cements incorporated with chlorhexidine can maintain its mechanical properties as well as reduce early S mutans biofilm formation. Controlled release/sustained release technology may be required to optimize the antibacterial activity of glass ionomer cements incorporated with bioactive glass.
基金Funded by the National Natural Science Foundation of China(Nos.50830101,51172073)the National Program on Key Basic Research Project(973 Program)(Nos.2011CB606204,2012CB619100)
文摘In order to accelerate the chronic wounds healing, we investigated the healing effects of bioactive glass and Yuunan baiyao ointments in streptozotocin-induced diabetic rats. The ointments were prepared by mixing 45S5 bioactive glass powder (16% weight) with Vaseline and different weight percentages of Yurman baiyao. Full-thickness defect wounds were created on the back of 130 SD rats and were randomly divided into 8 groups. The wound healing rates were calculated at 4, 7, 10, 14 and 21 days after surgery. The samples were harvested for further observations. Considering the wound closure rate, group 6 (with 5% Yuunan baiyao) has better wound healing performance than other diabetic groups. The lower inflammatory response was observed by gross observation and confirmed by the results of H&E staining and TEM observation. Besides, the proliferation of fibroblasts, the formation of granulation tissue, as well as the vascularization, were improved in group 6 compared to other diabetic groups. All results suggest that bioactive glass and Yunnan baiyao ointments can accelerate the recovery of diabetes-impaired skin wounds, and comparing to other diabetic groups, group 6 (with 5% Yunnan baiyao) has better healing effect.
基金funded by National Natural Science Foundation of China,grant 81701020National Natural Science Foundation of China,grant 82071081+1 种基金Shanghai Municipal Health and Family Planning Commission,grant 201740035China Postdoctoral Science Foundation,grant 2023M742318。
文摘Mesoporous bioactive glasses(MBGs),which belong to the category of modern porous nanomaterials,have garnered significant attention due to their impressive biological activities,appealing physicochemical properties,and desirable morphological features.They hold immense potential for utilization in diverse fields,including adsorption,separation,catalysis,bioengineering,and medicine.Despite possessing interior porous structures,excellent morphological characteristics,and superior biocompatibility,primitive MBGs face challenges related to weak encapsulation efficiency,drug loading,and mechanical strength when applied in biomedical fields.It is important to note that the advantageous attributes of MBGs can be effectively preserved by incorporating supramolecular assemblies,miscellaneous metal species,and their conjugates into the material surfaces or intrinsic mesoporous networks.The innovative advancements in these modified colloidal inorganic nanocarriers inspire researchers to explore novel applications,such as stimuli-responsive drug delivery,with exceptional in-vivo performances.In view of the above,we outline the fabrication process of calcium-silicon-phosphorus based MBGs,followed by discussions on their significant progress in various engineered strategies involving surface functionalization,nanostructures,and network modification.Furthermore,we emphasize the recent advancements in the textural and physicochemical properties of MBGs,along with their theranostic potentials in multiple cancerous and non-cancerous diseases.Lastly,we recapitulate compelling viewpoints,with specific considerations given from bench to bedside.
基金the project No.2021/43/P/ST7/02418 cofunded by the National Science Centre and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945339JMFF,RB,PG gratefully acknowledge the financial support provided by the Polish National Science Centre for the POLONEZ BIS 1“BAGBONE”,Project no.536651. JMFF would like to thank all the national and international research collaborators for their valuable contributions,especially for the papers covered in this review article+2 种基金the scope of the project CICECOAveiro Institute of Materials,UIDB/50011/2020,UIDP/50011/2020&LA/P/0006/2020,financed by national funds through the FCT/MCTES(PIDDAC)the Department of Health Research–Indian Council of Medical Research[DHR-ICMR]India[Reference:R. 11013/28/2021-GIA/HR dated November 25,2021]is recognized by SK and MA. GES and ACP are thankful to the Core Program of the National Institute of Materials Physics within the National Research Development and Innovation Plan 2022–2027,carried out with the support of the Romanian Ministry of Research,Innovation and Digitalization under the project PC2-PN23080101.
文摘Over the past two decades, the CICECO-hub scientists have devoted substantial efforts to advancing bioactiveinorganic materials based on calcium phosphates and alkali-free bioactive glasses. A key focus has been thedeliberate incorporation of therapeutic ions like Mg, Sr, Zn, Mn, or Ga to enhance osteointegration and vascularization,confer antioxidant properties, and impart antimicrobial effects, marking significant contributions tothe field of biomaterials and bone tissue engineering. Such an approach is expected to circumvent the uncertaintiesposed by methods relying on growth factors, such as bone morphogenetic proteins, parathyroidhormone, and platelet-rich plasma, along with their associated high costs and potential adverse side effects. Thiscomprehensive overview of CICECO-hub’s significant contributions to the forefront inorganic biomaterials acrossall research aspects and dimensionalities (powders, granules, thin films, bulk materials, and porous structures),follows a unified approach rooted in a cohesive conceptual framework, including synthesis, characterization, andtesting protocols. Tangible outcomes [injectable cements, durable implant coatings, and bone graft substitutes(scaffolds) featuring customized porous architectures for implant fixation, osteointegration, accelerated boneregeneration in critical-sized bone defects] were achieved. The manuscript showcases specific biofunctionalexamples of successful biomedical applications and effective translations to the market of bone grafts foradvanced therapies.
文摘Objective:To investigate the effect and mechanism of bioactive glass1393 on wound healing in mice with burn injuries.Methods:A benchtop temperature-controlled scald instrument was used to establish a mouse burn wound model,which was divided into an injury group(simple scald group)and a bioactive glass 1393treatment group.The wound healing of burn injuries in mice was observed at different times after the operation,and the formation of granulation tissue,collagen deposition and tissue proliferation in the wounds were observed by HE staining,Masson staining and Ki67 staining,and the levels of apoptosis-related proteins and the expression of wnt3a/β-catenin signaling pathway were detected in the wounds by Western blot.Results:Compared with the injury group,the bioactive glass 1393 group accelerated burn wound healing and promoted granulation tissue formation,collagen deposition,and cell proliferation.In addition,compared with the injury group,the bioactive glass 1393 group promoted the expression of Bcl-2 protein,inhibited the expression of Bax protein and up-regulated the expression of Wnt3a andβ-catenin protein.Conclusion:Bioactive glass 1393 promotes burn wound healing in mice by inhibiting apoptosis through modulation of wnt3a/β-catenin signaling pathway.
基金This work was supported by the National Natural Science Foundation of China(No.32171311,32000933,82271025)the Natural Science Foundation of Guangdong Province(No.2019A1515110480).
文摘Bone augmentation materials usually cannot provide enough new bone for dental implants due to the material degradation and mucosal pressure.The use of hydrogels with self-swelling properties may provide a higher bone augmentation,although swelling is generally considered to be a disadvantage in tissue engineering.Herein,a double-crosslinked gelatin-hyaluronic acid hydrogels(GH)with self-swelling properties were utilized.Meanwhile,niobium doped bioactive glasses(NbBG)was dispersed in the hydrogel network to prepare the GH-NbBG hydrogel.The composite hydrogel exhibited excellent biocompatibility and the addition of NbBG significantly improved the mechanical properties of the hydrogel.In vivo results found that GH-NbBG synergistically promoted angiogenesis and increased bone augmentation by self-swelling at the early stage of implantation.In addition,at the late stage after implantation,GH-NbBG significantly promoted new bone formation by activating RUNX2/Bglap signaling pathway.Therefore,this study reverses the self-swelling disadvantage of hydrogels into advantage and provides novel ideas for the application of hydrogels in bone augmentation.
基金financial support from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 857287(BBCE).
文摘Out of the wide range of calcium phosphate(CaP)biomaterials,calcium phosphate bone cements(CPCs)have attracted increased attention since their discovery in the 1980s due to their valuable properties such as bioactivity,osteoconductivity,injectability,hardening ability through a low-temperature setting reaction and moldability.Thereafter numerous researches have been performed to enhance the properties of CPCs.Nonetheless,low mechanical performance of CPCs limits their clinical application in load bearing regions of bone.Also,the in vivo resorption and replacement of CPC with new bone tissue is still controversial,thus further improvements of high clinical importance are required.Bioactive glasses(BGs)are biocompatible and able to bond to bone,stimulating new bone growth while dissolving over time.In the last decades extensive research has been performed analyzing the role of BGs in combination with different CaPs.Thus,the focal point of this review paper is to summarize the available research data on how injectable CPC properties could be improved or affected by the addition of BG as a secondary powder phase.It was found that despite the variances of setting time and compressive strength results,desirable injectable properties of bone cements can be achieved by the inclusion of BGs into CPCs.The published data also revealed that the degradation rate of CPCs is significantly improved by BG addition.Moreover,the presence of BG in CPCs improves the in vitro osteogenic differentiation and cell response as well as the tissue-material interaction in vivo.
基金This work was jointly supported by the National Natural Science Foundation of China(Grant Nos.81991505,82130027,81921002,82101071,82270953)the Innovative research team of high-level local universities in Shanghai(SHSMU-ZLCX20212400)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210528)The author would like to show gratitude for the support from Shanghai Post-doctoral Excellence Program(2020328).
文摘TypeⅡdiabetes mellitus(TIIDM)remains a challenging clinical issue for both dentists and orthopedists.By virtue of persistent hyperglycemia and altered host metabolism,the pathologic diabetic micromilieu with chronic inflammation,advanced glycation end products accumulation,and attenuated biomineralization severely impairs bone regeneration efficiency.Aiming to“remodel”the pathologic diabetic micromilieu,we 3D-printed bioscaffolds composed of Sr-containing mesoporous bioactive glass nanoparticles(Sr-MBGNs)and gelatin methacrylate(GelMA).Sr-MBGNs act as a biomineralization precursor embedded in the GelMA-simulated extracellular matrix and release Sr,Ca,and Si ions enhancing osteogenic,angiogenic,and immunomodulatory properties.In addition to angiogenic and anti-inflammatory outcomes,this innovative design reveals that the nanocomposites can modulate extracellular matrix reconstruction and simulate biomineralization by activating lysyl oxidase to form healthy enzymatic crosslinked collagen,promoting cell focal adhesion,modulating osteoblast differentiation,and boosting the release of OCN,the noncollagenous proteins(intrafibrillar mineralization dependent),and thus orchestrating osteogenesis through the Kindlin-2/PTH1R/OCN axis.This 3D-printed bioscaffold provides a multifunctional biomineralization-inspired system that remodels the“barren”diabetic microenvironment and sheds light on the new bone regeneration approaches for TIIDM.
基金financially supported by the National Key Research and Development Program of China(Nos.2022YFB4601402)the National Natural Science Foundation of China(Nos.32201109,51772233)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(Nos.2022B1515120052,2021A1515110557)the Key Basic Research Program of Shenzhen(No.JCYJ20200109150218836)the Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory(No.HJL202202A002)。
文摘Bone defect repair remains a troubling problem in clinical orthopedics,which involves complex biological processes.Calcium phosphates(CaPs)have been widely used owing to their advantage of biocompatibility.However,single component and traditional fabrication methods cannot meet the requirements of bioadaptability during the tissue repair process.In this work,0%,5%,15%,25%wt%of BG-TCP(bioactive glass-β-tricalcium phosphate)bioresorbable scaffolds with triply-periodic minimal surfaces(TPMS)-gyroid structure were prepared by the stereolithography(SLA)technology.TPMS-gyroid structure provided an accurate mimicry of natural bone tissue,and the incorporation of BG improved the compressive strength ofβ-TCP matrix,matched with the defective bone(2–12 MPa).Rapid but tunable degradation kinetics(compared with pure TCP)of BG enabled the BG-TCP system to sh8ow adaptable biodegradability to new bone generation.In vitro studies have shown that composite scaffolds have better mechanical properties(7.82 MPa),and can released appropriate contents of calcium,phosphorous,and magnesium ions,which promoted the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)and angiogenic ability of endothelial progenitor cells(EPCs).Moreover,the in vivo assessment of rat femoral defect revealed that TPMS-structure-based TCP scaffolds accelerated bone ingrowth to the pores.Moreover,BG-TCP scaffolds,especially 15BG-TCP group,exhibited superior bone regeneration capacity at both 4 and 8 weeks,which achieved an optimal match between the rate of material degradation and tissue regeneration.In summary,this study provides insight into influences of bioactive components(BG)and bionic structures(TPMS)on the physical-chemical properties of materials,cell behavior and tissue regeneration,which offers a promising strategy to design bioadaptive ceramic scaffolds in the clinical treatment of bone defects.
基金This work was supported by the Special Support Program for High Level Talents of Shaanxi Province of China,the key R&D plan of Shaanxi Province of China(grant No.2021GXLH-Z-052)State Key Laboratory for Manufacturing Systems Engineering of China(grant No.sklms2021006)Young Talent Support Plan of Xi’an Jiaotong University of China(grant No.QY6J003).
文摘Current treatments for full-thickness skin injuries are still unsatisfactory due to the lack of hierarchically stimulated dressings that can integrate the rapid hemostasis,inflammation regulation,and skin tissue remodeling into the one system instead of single-stage boosting.In this work,a multilayer-structured bioactive glass nanopowder(BGN@PTE)is developed by coating the poly-tannic acid andε-polylysine onto the BGN via facile layer-by-layer assembly as an integrative and multilevel dressing for the sequential management of wounds.In comparison to BGN and poly-tannic acid coated BGN,BGN@PTE exhibited the better hemostatic performance because of its multiple dependent approaches to induce the platelet adhesion/activation,red blood cells(RBCs)aggregation and fibrin network formation.Simultaneously,the bioactive ions from BGN facilitate the regulation of the inflammatory response while the poly-tannic acid and antibacterialε-polylysine prevent the wound infection,promoting the wound healing during the inflammatory stage.In addition,BGN@PTE can serve as a reactive oxygen species scavenger,alleviate the oxidation stress in wound injury,induce the cell migration and angiogenesis,and promote the proliferation stage of wound repair.Therefore,BGN@PTE demonstrated the significantly higher wound repair capacity than the commercial bioglass dressing Dermlin™.This multifunctional BGN@PTE is a potentially valuable dressing for full-thickness wound management and may be expected to extend to the other wounds therapy.
基金supported by the National Natural Science Foundation of China[Project 81870753]Peking University School of Stomatology[Project PKUSS20190104]Michigan Medicine-Peking University Health Science Center Joint Institute[BMU2022JI007].
文摘Bioactive glasses(BG)have been generally used in bone defects repair for its good osteoinductivity and osteoconductivity.However,the early angiogenesis of BG in the repair of large-sized bone defects may not be sufficient enough to support new bone formation,resulting in the failure of bone repair.Photobiomodulation(PBM)therapy,which is superior on promoting early angiogenesis,may contribute to the angiogenesis of BG and further enhance the repair of bone defects.Therefore,we applied BG and PBM in combination and preliminarily investigated their additive effects on bone regeneration both in vitro and in vivo.The in vitro results revealed that BG combined with PBM remarkably enhanced human bone marrow mesenchymal stem cells proliferation,osteogenic-related genes expression and mineralization,which was better than applying BG or PBM respectively.For in vivo studies,the histological staining results showed that BG induced new bone formation in the interior of defects and promoted new bone reconstruction at 6 weeks post-operation.The micro-computed tomography results further confirmed that BG combined with PBM accelerated bone formation and maturation,improved the speed and quality of bone regeneration,and promoted bone repair.In conclusion,with the optimum BG and PBM parameters,BG combined with PBM generated additive effects on promoting bone regeneration.
基金This work was founded by the“AO Trauma Deutschland Nachwuchsf¨orderung”(PK)as well as the German Research Foundation(DFGproject no.449121904)(AL,MG).
文摘Calcium phosphate cements (CPC) are currently widely used bone replacement materials with excellent bioactivity, but have considerable disadvantages like slow degradation. For critical-sized defects, however, an improved degradation is essential to match the tissue regeneration, especially in younger patients who are still growing. We demonstrate that a combination of CPC with mesoporous bioactive glass (MBG) particles led to an enhanced degradation in vitro and in a critical alveolar cleft defect in rats. Additionally, to support new bone formation the MBG was functionalized with hypoxia conditioned medium (HCM) derived from rat bone marrow stromal cells. HCM-functionalized scaffolds showed an improved cell proliferation and the highest formation of new bone volume. This highly flexible material system together with the drug delivery capacity is adaptable to patient specific needs and has great potential for clinical translation.