Petrographic analysis combined with various techniques, such as thin section identification, fluid inclusions, isotopic data, petro-physical property testing and oil testing results, was used to study diagenetic evolu...Petrographic analysis combined with various techniques, such as thin section identification, fluid inclusions, isotopic data, petro-physical property testing and oil testing results, was used to study diagenetic evolution and its effect on reservoir-quality of fan delta reservoirs of Es4s in the Bonan sag. The diagenesis is principally characterized by strong compaction, undercompaction, multi-phase of dissolution and cementation. Compaction played a more important role than cementation in destroying the primary porosity of the sandstones. The reservoirs have experienced complicated diagenetic environment evolution of "weak alkalineacid-alkalinity-acid-weak alkalinity" and two-stage of hydrocarbon filling. The diagenetic sequences are summarized as "early compaction/early pyrite/gypsum/calcite/dolomite cementation→feldspar dissolution/the first stage of quartz overgrowth → early hydrocarbon filling→quartz dissolution/anhydrite/Fe-carbonate cementation→Fe-carbonate dissolution/feldspar dissolution/ the second stage of quartz overgrowth→later hydrocarbon filling→later pyrite cementation. In the same diagenetic context, the diagenetic evolution processes that occurred in different sub/micro-facies during progressive burial have resulted in heterogeneous reservoir properties and oiliness. The braided channel reservoirs in fan delta plain are poorly sorted with high matrix contents. The physical properties decrease continually due to the principally strong compaction and weak dissolution. The present properties of braided channel reservoirs are extremely poor, which is evidenced by few oil layers developed in relatively shallow strata while dry layers entirely in deep. The reservoirs both in the underwater distributary channels and mouth bars are well sorted and have a strong ability to resist compaction. Abundant pores are developed in medium-deep strata because of modifications by two-stage of acidic dissolution and hydrocarbon filling. The present properties are relatively well both in the underwater distributary channels and mouth bars and plenty of oil layers are developed in different burial depth. The present reservoir properties both in interdistributary channel and pre-fan delta are poor caused by extensively cementation. Small amounts of oil layers, oil-water layers and oil-bearing layers are developed in relatively shallow strata while dry layers totally in deep.展开更多
Petrographic analysis combined with various techniques, such as thin section identification, petro-physical property testing, mercury penetration, oil testing results, was used to assess basic reservoir characteristic...Petrographic analysis combined with various techniques, such as thin section identification, petro-physical property testing, mercury penetration, oil testing results, was used to assess basic reservoir characteristics of deep strata in Palaeogene in the northern steep slope zone of the Bonan sag, China. The formation mechanisms of high quality reservoirs in deep strata were discussed according to evolution characteristics of paleopressures and paleofluids in geological period. The deep reservoirs have poor physical properties and mainly develop extra-low porosity, extra-low and ultra-low permeability reservoirs. Reservoir spaces mainly consist of secondary pores and overpressure fractures. Early overpressure, early hydrocarbon filling and dissolution by early organic acids are the major formation mechanisms of high quality reservoirs. The conglomerate in inner fan which had a poor primary physical property mainly experienced strong compaction and calcareous matrix recrystallization. The physical properties of the inner fan were poor with weak dissolution because of poor mobility of fluid. The reservoirs mainly are type IV reservoirs and the distribution extends with the burial depth. The braided channel reservoirs in the middle fan had relative good primary physical properties and strong ability to resist compaction which favored the preservation of primary pores. Large amounts of the secondary porosities were created due to dissolution by early organic acids. A series of micro-fractures generated by early overpressures would be important migration pathways for hydrocarbon and organic acids. Furthermore, early overpressures had retarded maturation of organic matters and organic acids which had flowed into reservoirs already and could keep in acid environment for a long time. This process would contribute significantly to reinforcing the dissolution and enhancing the reservoir quality. The braided channel reservoirs were charged with high oil saturation preferentially by early hydrocarbon filling which could inhibit later cementation. Therefore, the braided channel reservoirs develop a great quantity of reservoir spaces with type I, type II and type III reservoirs in the majority in the deep strata. With the burial depth, distributions of type I and type II reservoirs are narrowed and distribution of type III reservoirs decreases first and then extends. The reservoirs both in outer fan and in interdistributary of the middle fan have extremely poor physical properties because of extensive carbonate cementation. The type of the reservoirs mainly is type IV.展开更多
Following shale gas, shale oil has become another highlight in unconventional hydrocarbon exploration and development. A large amount of shale oil has been produced from a host of marine shale in North America in rece...Following shale gas, shale oil has become another highlight in unconventional hydrocarbon exploration and development. A large amount of shale oil has been produced from a host of marine shale in North America in recent years. In China, lacustrine shale, as the main source rock of conventional oil and gas, should also have abundant oil retained in place. In this study, geochemical and geologic characteristics of lacustrine shale from Es3L sub-member in Bonan sag were characterized by using total organic carbon(TOC), Rock-Eval pyrolysis, X-ray diffraction, and ?log R method. The results show that the Es3L sub-member shale have TOC contents ranging from 0.5 wt.% to 9.3 wt.%, with an average of 2.9 wt.%. The organic matter is predominantly Type I kerogen, with minor amounts of Type II1 kerogen. The temperature of maximum yield of pyrolysate(Tmax) values ranges from 424 to 447 ℃, with an average of 440 ℃, and vitrinite reflectance(Ro%) ranges from 0.7% to 0.9%, indicating most of shales are thermally mature. The dominant minerals of Es3L shale in Bonan sag are carbonates(including calcite and dolomite), averaging 51.82 wt.%, and the second minerals are clay(mostly are montmorillonite-illite-mixed layer and illite) and quartz, averaging about 18 wt.%. Finally, its shale oil resources were evaluated by using the volumetric method, and the evaluation result shows that the shale oil resource is up to 5.94 billion tons, and mostly Class I resource. Therefore, the exploration of the lacustrine shale oil of Es3L in Bonan sag should be strengthened.展开更多
基金Project(41102058)supported by the National Natural Science Foundation of ChinaProject(2011ZX05006-003)supported by National Oil&Gas Major Project of China+1 种基金Project(U1262203)supported by Key Program for National Natural Science Foundation of ChinaProject(LW140101A)for Excellent Doctoral Dissertation supported by China University of Petroleum,China
文摘Petrographic analysis combined with various techniques, such as thin section identification, fluid inclusions, isotopic data, petro-physical property testing and oil testing results, was used to study diagenetic evolution and its effect on reservoir-quality of fan delta reservoirs of Es4s in the Bonan sag. The diagenesis is principally characterized by strong compaction, undercompaction, multi-phase of dissolution and cementation. Compaction played a more important role than cementation in destroying the primary porosity of the sandstones. The reservoirs have experienced complicated diagenetic environment evolution of "weak alkalineacid-alkalinity-acid-weak alkalinity" and two-stage of hydrocarbon filling. The diagenetic sequences are summarized as "early compaction/early pyrite/gypsum/calcite/dolomite cementation→feldspar dissolution/the first stage of quartz overgrowth → early hydrocarbon filling→quartz dissolution/anhydrite/Fe-carbonate cementation→Fe-carbonate dissolution/feldspar dissolution/ the second stage of quartz overgrowth→later hydrocarbon filling→later pyrite cementation. In the same diagenetic context, the diagenetic evolution processes that occurred in different sub/micro-facies during progressive burial have resulted in heterogeneous reservoir properties and oiliness. The braided channel reservoirs in fan delta plain are poorly sorted with high matrix contents. The physical properties decrease continually due to the principally strong compaction and weak dissolution. The present properties of braided channel reservoirs are extremely poor, which is evidenced by few oil layers developed in relatively shallow strata while dry layers entirely in deep. The reservoirs both in the underwater distributary channels and mouth bars are well sorted and have a strong ability to resist compaction. Abundant pores are developed in medium-deep strata because of modifications by two-stage of acidic dissolution and hydrocarbon filling. The present properties are relatively well both in the underwater distributary channels and mouth bars and plenty of oil layers are developed in different burial depth. The present reservoir properties both in interdistributary channel and pre-fan delta are poor caused by extensively cementation. Small amounts of oil layers, oil-water layers and oil-bearing layers are developed in relatively shallow strata while dry layers totally in deep.
基金Project(41102058)supported by the National Natural Science Foundation of ChinaProject(2011ZX05006-003)supported by National Oil&Gas Major Project of China+1 种基金Project(U1262203)supported by Key Program for National Natural Science Foundation of ChinaProject(LW140101A)supported by Excellent Doctoral Dissertation Program of China University of Petroleum
文摘Petrographic analysis combined with various techniques, such as thin section identification, petro-physical property testing, mercury penetration, oil testing results, was used to assess basic reservoir characteristics of deep strata in Palaeogene in the northern steep slope zone of the Bonan sag, China. The formation mechanisms of high quality reservoirs in deep strata were discussed according to evolution characteristics of paleopressures and paleofluids in geological period. The deep reservoirs have poor physical properties and mainly develop extra-low porosity, extra-low and ultra-low permeability reservoirs. Reservoir spaces mainly consist of secondary pores and overpressure fractures. Early overpressure, early hydrocarbon filling and dissolution by early organic acids are the major formation mechanisms of high quality reservoirs. The conglomerate in inner fan which had a poor primary physical property mainly experienced strong compaction and calcareous matrix recrystallization. The physical properties of the inner fan were poor with weak dissolution because of poor mobility of fluid. The reservoirs mainly are type IV reservoirs and the distribution extends with the burial depth. The braided channel reservoirs in the middle fan had relative good primary physical properties and strong ability to resist compaction which favored the preservation of primary pores. Large amounts of the secondary porosities were created due to dissolution by early organic acids. A series of micro-fractures generated by early overpressures would be important migration pathways for hydrocarbon and organic acids. Furthermore, early overpressures had retarded maturation of organic matters and organic acids which had flowed into reservoirs already and could keep in acid environment for a long time. This process would contribute significantly to reinforcing the dissolution and enhancing the reservoir quality. The braided channel reservoirs were charged with high oil saturation preferentially by early hydrocarbon filling which could inhibit later cementation. Therefore, the braided channel reservoirs develop a great quantity of reservoir spaces with type I, type II and type III reservoirs in the majority in the deep strata. With the burial depth, distributions of type I and type II reservoirs are narrowed and distribution of type III reservoirs decreases first and then extends. The reservoirs both in outer fan and in interdistributary of the middle fan have extremely poor physical properties because of extensive carbonate cementation. The type of the reservoirs mainly is type IV.
基金supported by the National Natural Science Foundation of China (Nos. 41672116, 41330313)the Fundamental Research Funds for the Central Universities (No. 17CX05012)National Science and Technology Major Project of China (Nos. 2017ZX05049004, 2016ZX05046-001)
文摘Following shale gas, shale oil has become another highlight in unconventional hydrocarbon exploration and development. A large amount of shale oil has been produced from a host of marine shale in North America in recent years. In China, lacustrine shale, as the main source rock of conventional oil and gas, should also have abundant oil retained in place. In this study, geochemical and geologic characteristics of lacustrine shale from Es3L sub-member in Bonan sag were characterized by using total organic carbon(TOC), Rock-Eval pyrolysis, X-ray diffraction, and ?log R method. The results show that the Es3L sub-member shale have TOC contents ranging from 0.5 wt.% to 9.3 wt.%, with an average of 2.9 wt.%. The organic matter is predominantly Type I kerogen, with minor amounts of Type II1 kerogen. The temperature of maximum yield of pyrolysate(Tmax) values ranges from 424 to 447 ℃, with an average of 440 ℃, and vitrinite reflectance(Ro%) ranges from 0.7% to 0.9%, indicating most of shales are thermally mature. The dominant minerals of Es3L shale in Bonan sag are carbonates(including calcite and dolomite), averaging 51.82 wt.%, and the second minerals are clay(mostly are montmorillonite-illite-mixed layer and illite) and quartz, averaging about 18 wt.%. Finally, its shale oil resources were evaluated by using the volumetric method, and the evaluation result shows that the shale oil resource is up to 5.94 billion tons, and mostly Class I resource. Therefore, the exploration of the lacustrine shale oil of Es3L in Bonan sag should be strengthened.