期刊文献+
共找到701篇文章
< 1 2 36 >
每页显示 20 50 100
Structural and functional connectivity of the whole brain and subnetworks in individuals with mild traumatic brain injury:predictors of patient prognosis
1
作者 Sihong Huang Jungong Han +4 位作者 Hairong Zheng Mengjun Li Chuxin Huang Xiaoyan Kui Jun Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1553-1558,共6页
Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u... Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury. 展开更多
关键词 cognitive function CROss-sECTION FOLLOW-UP functional connectivity graph theory longitudinal study mild traumatic brain injury prediction small-worldness structural connectivity subnetworks whole brain network
下载PDF
Assessing target optical camouflage effects using brain functional networks:A feasibility study
2
作者 Zhou Yu Li Xue +4 位作者 Weidong Xu Jun Liu Qi Jia Jianghua Hu Jidong Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期69-77,共9页
Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby c... Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby contributing to the advancement of camouflage evaluation.In this study,images with various camouflage effects were presented to observers to generate electroencephalography(EEG)signals,which were then used to construct a brain functional network.The topological parameters of the network were subsequently extracted and input into a machine learning model for training.The results indicate that most of the classifiers achieved accuracy rates exceeding 70%.Specifically,the Logistic algorithm achieved an accuracy of 81.67%.Therefore,it is possible to predict target camouflage effectiveness with high accuracy without the need to calculate discovery probability.The proposed method fully considers the aspects of human visual and cognitive processes,overcomes the subjectivity of human interpretation,and achieves stable and reliable accuracy. 展开更多
关键词 Camouflage effect evaluation Electroencephalography(EEG) brain functional networks Machine learning
下载PDF
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
3
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
下载PDF
Brain Functional Network Changes in Patients with Poststroke Cognitive Impairment Following Acupuncture Therapy
4
作者 Ran Wang Nian Liu +4 位作者 Hao Xu Peng Zhang Xiaohua Huang Lin Yang Xiaoming Zhang 《Health》 2024年第9期856-871,共16页
Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture t... Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture therapy. Methods: Twenty-two PSCI patients who underwent acupuncture therapy in our hospital were enrolled as research subjects. Another 14 people matched for age, sex, and education level were included in the normal control (HC) group. All the subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans;the PSCI patients underwent one scan before acupuncture therapy and another after. The network metric difference between PSCI patients and HCs was analyzed via the independent-sample t test, whereas the paired-sample t test was employed to analyze the network metric changes in PSCI patients before vs. after treatment. Results: Small-world network attributes were observed in both groups for sparsities between 0.1 and 0.28. Compared with the HC group, the PSCI group presented significantly lower values for the global topological properties (γ, Cp, and Eloc) of the brain;significantly greater values for the nodal attributes of betweenness centrality in the CUN. L and the HES. R, degree centrality in the SFGdor. L, PCG. L, IPL. L, and HES. R, and nodal local efficiency in the ORBsup. R, ORBsupmed. R, DCG. L, SMG. R, and TPOsup. L;and decreased degree centrality in the MFG. R, IFGoperc. R, and SOG. R. After treatment, PSCI patients presented increased degree centrality in the LING.L, LING.R, and IOG. L and nodal local efficiency in PHG. L, IOG. R, FFG. L, and the HES. L, and decreased betweenness centrality in the PCG. L and CUN. L, degree centrality in the ORBsupmed. R, and nodal local efficiency in ANG. R. Conclusion: Cognitive decline in PSCI patients may be related to BFN disorders;acupuncture therapy may modulate the topological properties of the BFNs of PSCI patients. 展开更多
关键词 Cognitive Decline Poststroke Cognitive Impairment functional Magnetic Resonance Imaging brain functional network Graph Theoretical Analysis
下载PDF
Brain Functional Networks with Dynamic Hypergraph Manifold Regularization for Classification of End-Stage Renal Disease Associated with Mild Cognitive Impairment
5
作者 Zhengtao Xi Chaofan Song +2 位作者 Jiahui Zheng Haifeng Shi Zhuqing Jiao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2243-2266,共24页
The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot rep... The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot represent functional interactions or higher-order relationships between multiple brain regions.To solve this issue,we developed a method to construct a dynamic brain functional network(DBFN)based on dynamic hypergraph MR(DHMR)and applied it to the classification of ESRD associated with mild cognitive impairment(ESRDaMCI).The construction of DBFN with Pearson’s correlation(PC)was transformed into an optimization model.Node convolution and hyperedge convolution superposition were adopted to dynamically modify the hypergraph structure,and then got the dynamic hypergraph to form the manifold regular terms of the dynamic hypergraph.The DHMR and L_(1) norm regularization were introduced into the PC-based optimization model to obtain the final DHMR-based DBFN(DDBFN).Experiment results demonstrated the validity of the DDBFN method by comparing the classification results with several related brain functional network construction methods.Our work not only improves better classification performance but also reveals the discriminative regions of ESRDaMCI,providing a reference for clinical research and auxiliary diagnosis of concomitant cognitive impairments. 展开更多
关键词 End-stage renal disease mild cognitive impairment brain functional network dynamic hypergraph manifold regularization CLAssIFICATION
下载PDF
Consistent and Specific Multi-View Functional Brain Networks Fusion for Autism Spectrum Disorder Diagnosis
6
作者 Chaojun Zhang Chengcheng Wang +1 位作者 Limei Zhang Yunling Ma 《Journal of Applied Mathematics and Physics》 2023年第7期1914-1929,共16页
Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an ob... Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an objective basis for brain disorders such as autistic spectrum disorder (ASD). Due to its importance, researchers have proposed a number of FBN estimation methods. However, most existing methods only model a type of functional connection relationship between brain regions-of-interest (ROIs), such as partial correlation or full correlation, which is difficult to fully capture the subtle connections among ROIs since these connections are extremely complex. Motivated by the multi-view learning, in this study we propose a novel Consistent and Specific Multi-view FBNs Fusion (CSMF) approach. Concretely, we first construct multi-view FBNs (i.e., multiple types of FBNs modelling various relationships among ROIs), and then these FBNs are decomposed into a consistent representation matrix and their own specific matrices which capture their common and unique information, respectively. Lastly, to obtain a better brain representation, it is fusing the consistent and specific representation matrices in the latent representation spaces of FBNs, but not directly fusing the original FBNs. This potentially makes it more easily to find the comprehensively brain connections. The experimental results of ASD identification on the ABIDE datasets validate the effectiveness of our proposed method compared to several state-of-the-art methods. Our proposed CSMF method achieved 72.8% and 76.67% classification performance on the ABIDE dataset. 展开更多
关键词 functional brain network FUsION CONsIsTENCY sPECIFICITY Autism spectrum Disorder
下载PDF
Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis 被引量:1
7
作者 Qiankun Zuo Junhua Hu +5 位作者 Yudong Zhang Junren Pan Changhong Jing Xuhang Chen Xiaobo Meng Jin Hong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2129-2147,共19页
The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders.The brain functional network is suitable to bridge the correlat... The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders.The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders.However,it is challenging to access considerable amounts of brain functional network data,which hinders the widespread application of data-driven models in dementia diagnosis.In this study,a novel distribution-regularized adversarial graph auto-Encoder(DAGAE)with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset,improving the dementia diagnosis accuracy of data-driven models.Specifically,the label distribution is estimated to regularize the latent space learned by the graph encoder,which canmake the learning process stable and the learned representation robust.Also,the transformer generator is devised to map the node representations into node-to-node connections by exploring the long-term dependence of highly-correlated distant brain regions.The typical topological properties and discriminative features can be preserved entirely.Furthermore,the generated brain functional networks improve the prediction performance using different classifiers,which can be applied to analyze other cognitive diseases.Attempts on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset demonstrate that the proposed model can generate good brain functional networks.The classification results show adding generated data can achieve the best accuracy value of 85.33%,sensitivity value of 84.00%,specificity value of 86.67%.The proposed model also achieves superior performance compared with other related augmentedmodels.Overall,the proposedmodel effectively improves cognitive disease diagnosis by generating diverse brain functional networks. 展开更多
关键词 Adversarial graph encoder label distribution generative transformer functional brain connectivity graph convolutional network DEMENTIA
下载PDF
Brain Functional Network Based on Small-Worldness and Minimum Spanning Tree for Depression Analysis 被引量:1
8
作者 Bingtao Zhang Dan Wei +1 位作者 Yun Su Zhonglin Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第2期198-208,共11页
Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in p... Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in patients with depression,this paper proposes a depression analysis method based on brain function network(BFN).To avoid the volume conductor effect,BFN was constructed based on phase lag index(PLI).Then the indicators closely related to depression were selected from weighted BFN based on small-worldness(SW)characteristics and binarization BFN based on the minimum spanning tree(MST).Differences analysis between groups and correlation analysis between these indicators and diagnostic indicators were performed in turn.The resting state electroencephalogram(EEG)data of 24 patients with depression and 29 healthy controls(HC)was used to verify our proposed method.The results showed that compared with HC,the information processing of BFN in patients with depression decreased,and BFN showed a trend of randomization. 展开更多
关键词 DEPREssION brain function network(BFN) small-worldness(sW) minimum spanning tree(MsT)
下载PDF
Functional near-infrared spectroscopy in non-invasive neuromodulation 被引量:3
9
作者 Congcong Huo Gongcheng Xu +6 位作者 Hui Xie Tiandi Chen Guangjian Shao Jue Wang Wenhao Li Daifa Wang Zengyong Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1517-1522,共6页
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson... Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases. 展开更多
关键词 brain-computer interface cerebral neural networks functional near-infrared spectroscopy neural circuit NEUROFEEDBACK neurological diseases NEUROMODULATION non-invasive brain stimulation transcranial electrical stimulation transcranial electrical stimulation
下载PDF
Epileptic brain network mechanisms and neuroimaging techniques for the brain network
10
作者 Yi Guo Zhonghua Lin +1 位作者 Zhen Fan Xin Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2637-2648,共12页
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d... Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions. 展开更多
关键词 electrophysiological techniques EPILEPsY functional brain network functional magnetic resonance imaging functional near-infrared spectroscopy machine leaning molecular imaging neuroimaging techniques structural brain network virtual epileptic models
下载PDF
The development of brain functional connectivity networks revealed by resting-state functional magnetic resonance imaging 被引量:3
11
作者 Chao-Lin Li Yan-Jun Deng +2 位作者 Yu-Hui He Hong-Chang Zhai Fu-Cang Jia 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第8期1419-1429,共11页
Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the... Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013. 展开更多
关键词 nerve REGENERATION functional MRI brain network functional connectivity REsTING-sTATE ICA brain development children REsTING-sTATE networks INFANT template standardized neural REGENERATION
下载PDF
Extracting Sub-Networks from Brain Functional Network Using Graph Regularized Nonnegative Matrix Factorization 被引量:1
12
作者 Zhuqing Jiao Yixin Ji +1 位作者 Tingxuan Jiao Shuihua Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期845-871,共27页
Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the di... Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the disease may affect some local connectivity in the brain functional network.That is,there are functional abnormalities in the sub-network.Therefore,it is crucial to accurately identify them in pathological diagnosis.To solve these problems,we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization(GNMF).The dynamic functional networks of normal subjects and early mild cognitive impairment(eMCI)subjects were vectorized and the functional connection vectors(FCV)were assembled to aggregation matrices.Then GNMF was applied to factorize the aggregation matrix to get the base matrix,in which the column vectors were restored to a common sub-network and a distinctive sub-network,and visualization and statistical analysis were conducted on the two sub-networks,respectively.Experimental results demonstrated that,compared with other matrix factorization methods,the proposed method can more obviously reflect the similarity between the common subnetwork of eMCI subjects and normal subjects,as well as the difference between the distinctive sub-network of eMCI subjects and normal subjects,Therefore,the high-dimensional features in brain functional networks can be best represented locally in the lowdimensional space,which provides a new idea for studying brain functional connectomes. 展开更多
关键词 brain functional network sub-network functional connectivity graph regularized nonnegative matrix factorization(GNMF) aggregation matrix
下载PDF
Sex Differences in Reconstructed Resting-State Functional Brain Networks for Children
13
作者 Xianglai Yang Han Zhang 《Journal of Biosciences and Medicines》 2020年第12期166-177,共12页
Neuroscience studies have demonstrated that functional differences in human brains between males and females might result in their cognitive and psychological distinctions. To investigate sex differences in resting-st... Neuroscience studies have demonstrated that functional differences in human brains between males and females might result in their cognitive and psychological distinctions. To investigate sex differences in resting-state functional networks for children, the functional brain networks of two groups including boys and girls were reconstructed by functional connectivity with significant between-group differences respectively based on two brain atlases, and then the reconstructed functional networks were compared from the viewpoint of small-world properties. The functional brain networks of the two groups both displayed topological properties of the small-world network based on different brain atlases but exhibited some sex differences in certain measures. Specifically, for the automated anatomical labeling atlas, compared with girls, boys showed stronger small-world properties and higher ability of local information processing in brain networks;for the Harvard Oxford Atlas, the shortest path length of boys increased, indicating poorer performance in both global information transmission and resistance to the random attack. 展开更多
关键词 sex Difference functional Connectivity brain network FMRI
下载PDF
Studies in Brain Functional Networks Based on Complex Networks
14
作者 Bin Nie Jinchi Zhang +2 位作者 Lanhua Zhang Yujuan Li Shaowei Xue 《Journal of Control Science and Engineering》 2014年第1期28-34,共7页
The purpose of the paper is to provide a way to model the brain functional network based on the complex networks with brain anatomical architecture. We introduce the brain structural and functional researches, and del... The purpose of the paper is to provide a way to model the brain functional network based on the complex networks with brain anatomical architecture. We introduce the brain structural and functional researches, and delineate the brain anatomical and functional networks based on complex networks, then we discuss the brain functional complex network models; at last we put forward the brain functional networks modeling process and the data processing with fMRI (functional magnetic resonance imaging) in detailed. 展开更多
关键词 Complex network brain functional network NEURON modeling.
下载PDF
Changes in brain functional network connectivity after stroke 被引量:3
15
作者 Wei Li Yapeng Li +1 位作者 Wenzhen Zhu Xi Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第1期51-60,共10页
Studies have shown that functional network connection models can be used to study brain net- work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore func... Studies have shown that functional network connection models can be used to study brain net- work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their first ever stroke. Using independent component analysis, six spatially independent components highly correlat- ed to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our findings suggest that functional network connectivity in stroke patients is more complex than that in hea- lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke. 展开更多
关键词 nerve regeneration brain injury sTROKE motor areas functional magnetic resonanceimaging brain network independent component analysis functional network connectivity neuralplasticity NsFC grant neural regeneration
下载PDF
Analysis of a phase synchronized functional network based on the rhythm of brain activities 被引量:2
16
作者 李凌 金贞兰 李斌 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第3期512-518,共7页
Rhythm of brain activities represents oscillations of postsynaptic potentials in neocortex, therefore it can serve as an indicator of the brain activity state. In order to check the connectivity of brain rhythm, this ... Rhythm of brain activities represents oscillations of postsynaptic potentials in neocortex, therefore it can serve as an indicator of the brain activity state. In order to check the connectivity of brain rhythm, this paper develops a new method of constructing functional network based on phase synchronization. Electroencephalogram (EEG) data were collected while subjects looking at a green cross in two states, performing an attention task and relaxing with eyes-open. The EEG from these two states was filtered by three band-pass filters to obtain signals of theta (4-7 Hz), alpha (8-13 Hz) and beta (14-30 Hz) bands. Mean resultant length was used to estimate strength of phase synchronization in three bands to construct networks of both states, and mean degree K and cluster coefficient C of networks were calculated as a function of threshold. The result shows higher cluster coetticient in the attention state than in the eyes-open state in all three bands, suggesting that cluster coefficient reflects brain state. In addition, an obvious fronto-parietal network is found in the attention state, which is a well-known attention network. These results indicate that attention modulates the fronto-parietal connectivity in different modes as compared with the eyes-open state. Taken together this method is an objective and important tool to study the properties of neural networks of brain rhythm, 展开更多
关键词 ELECTROENCEPHALOGRAM phase synchronization RHYTHM functional brain network
原文传递
Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state 被引量:1
17
作者 Yan-li Yang Hong-xia Deng +2 位作者 Gui-yang Xing Xiao-luan Xia Hai-fang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第2期298-307,共10页
It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we inves-tigated feature binding of col... It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we inves-tigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state.Z-values in the vision-related brain regions were calculated, conifrming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental ifndings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception. 展开更多
关键词 nerve regeneration functional magnetic resonance imaging resting state task state brain network module division feature binding Fisher’s Z transform CONNECTIVITY visual stimuli NsFC grants neural regeneration
下载PDF
An abnormal resting-state functional brain network indicates progression towards Alzheimer's disease 被引量:4
18
作者 Jie Xiang Hao Guo +2 位作者 Rui Cao Hong Liang Junjie Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第30期2789-2799,共11页
Brain structure and cognitive function change in the temporal lobe, hippocampus, and prefrontal cortex of patients with mild cognitive impairment and Alzheimer's disease, and brain network-connection strength, networ... Brain structure and cognitive function change in the temporal lobe, hippocampus, and prefrontal cortex of patients with mild cognitive impairment and Alzheimer's disease, and brain network-connection strength, network efficiency, and nodal attributes are abnormal. However, existing research has only analyzed the differences between these patients and normal controls. In this study, we constructed brain networks using resting-state functional MRI data that was extracted from four populations (nor- mal controls, patients with early mild cognitive impairment, patients with late mild cognitive impairment, and patients with Alzheimer's disease) using the Alzheimer's Disease Neuroimaging Initiative data set. The aim was to analyze the characteristics of resting-state functional neural networks, and to observe mild cognitive impairment at different stages before the transformation to Alzheimer's disease. Results showed that as cognitive deficits increased across the four groups, the shortest path in the rest- ing-state functional network gradually increased, while clustering coefficients gradually decreased. This evidence indicates that dementia is associated with a decline of brain network efficiency. In addi- tion, the changes in functional networks revealed the progressive deterioration of network function across brain regions from healthy elderly adults to those with mild cognitive impairment and AIz- heimer's disease. The alterations of node attributes in brain regions may reflect the cognitive functions in brain regions, and we speculate that early impairments in memory, hearing, and language function can eventually lead to diffuse brain injury and other cognitive impairments. 展开更多
关键词 neural regeneration NEURODEGENERATION human connectome functional MRI graph theory resting statesmall world property early mild cognitive impairment late mild cognitive impairment Alzheimer's diseaseaging diffuse brain disease grants-supported paper NEUROREGENERATION
下载PDF
Potential Biomarkers of Schizophrenia from MEG Resting-State Functional Connectivity Networks: Preliminary Data
19
作者 Susan M. Bowyer Klevest Gjini +6 位作者 Xiao Zhu Lawrence Kim John E. Moran Syeda U. Rizvi Valentina Gumenyuk Norman Tepley Nash N. Boutros 《Journal of Behavioral and Brain Science》 2015年第1期1-11,共11页
Previous studies examining coherence and connectivity deviations in schizophrenia patients relied on standard coherence measures between recording sites (at the sensor level). A coherence source imaging (CSI) methodol... Previous studies examining coherence and connectivity deviations in schizophrenia patients relied on standard coherence measures between recording sites (at the sensor level). A coherence source imaging (CSI) methodology where coherence is assessed within imaged brain structures (at the source level) was developed recently by our group and applied successfully for detecting coherent areas in the cortical networks of patients with epilepsy. We applied this Magnetoencephalography (MEG)-CSI technique to measure normal and pathological patterns of brain oscillations (biomarkers) in normal subjects and patients diagnosed with schizophrenia. Twelve patients diagnosed with schizophrenia and twelve healthy control subjects were studied. A ten-minute resting state MEG brain scan was performed with eyes open. MEG-CSI analysis was performed to identify the cortical areas that interacted strongly within the 3 - 50 Hz frequency range. Statistically significant increased regions of coherence were detected in schizophrenia patients compared to controls in the right inferior frontal gyrus (BA 47—pars orbitalis), left superior frontal gyrus (BA9— dorsolateral prefrontal cortex), right middle frontal gyrus (BA 10—anterior prefrontal cortex & BA 46—dorsolateral prefrontal cortex), and right cingulate gyrus (BA 24—ventral anterior cingulate cortex). These areas are involved in language, memory, decision making, empathy, executive and, higher cognitive functioning. We conclude that MEG-CSI can detect imaging biomarkers from resting state brain activity in schizophrenia patients that deviates from normal control subjects in several behaviorally salient brain regions. Analysis with MEG-CSI can provide biomarkers of abnormalities in the resting-state. The findings and procedures described can be used to probe the pathophysiology of schizophrenia and possibly detect subtypes. 展开更多
关键词 MAGNETOENCEPHALOGRAPHY (MEG) Coherence sCHIZOPHRENIA functional REsTING state brain networks
下载PDF
Functional Brain Network Learning Based on Spatial Similarity for Brain Disorders Identification
20
作者 Lei Sun Tingting Guo 《Journal of Applied Mathematics and Physics》 2020年第11期2427-2437,共11页
Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, suc... Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, such as Alzheimer’s diseases (AD) and its prodromal state (<em>i</em>.<em>e</em>., Mild cognitive impairment, MCI). In the past decades, researchers have developed numbers of approaches for FBN estimation, including Pearson’s correction (PC), sparse representation (SR), and so on. Despite their popularity and wide applications in current studies, most of the approaches for FBN estimation only consider the dependency between the measured blood oxygen level dependent (BOLD) time series, but ignore the spatial relationships between pairs of brain regions. In practice, the strength of functional connection between brain regions will decrease as their distance increases. Inspired by this, we proposed a new approach for FBN estimation based on the assumption that the closer brain regions tend to share stronger relationships or similarities. To verify the effectiveness of the proposed method, we conduct experiments on a public dataset to identify the patients with MCIs from health controls (HCs) using the estimated FBNs. Experimental results demonstrate that the proposed approach yields statistically significant improvement in seven performance metrics over using the baseline methods. 展开更多
关键词 functional brain network Pearson’s Correction sparse Representation spatial Relationships sIMILARITY Mild Cognitive Impairment
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部