Emerging research suggests a potential association of progression of Alzheimer's disease(AD)with alterations in synaptic currents and mitochondrial dynamics.However,the specific associations between these patholog...Emerging research suggests a potential association of progression of Alzheimer's disease(AD)with alterations in synaptic currents and mitochondrial dynamics.However,the specific associations between these pathological changes remain unclear.In this study,we utilized Aβ42-induced AD rats and primary neural cells as in vivo and in vitro models.The investigations included behavioural tests,brain magnetic resonance imaging(MRI),liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis,Nissl staining,thioflavin-S staining,enzyme-linked immunosorbent assay,Golgi-Cox staining,transmission electron microscopy(TEM),immunofluorescence staining,proteomics,adenosine triphosphate(ATP)detection,mitochondrial membrane potential(MMP)and reactive oxygen species(ROS)assessment,mitochondrial morphology analysis,electrophysiological studies,Western blotting,and molecular docking.The results revealed changes in synaptic currents,mitophagy,and mitochondrial dynamics in the AD models.Remarkably,intervention with Dengzhan Shengmai(DZSM)capsules emerged as a pivotal element in this investigation.Aβ42-induced synaptic dysfunction was significantly mitigated by DZSM intervention,which notably amplified the frequency and amplitude of synaptic transmission.The cognitive impairment observed in AD rats was ameliorated and accompanied by robust protection against structural damage in key brain regions,including the hippocampal CA3,primary cingular cortex,prelimbic system,and dysgranular insular cortex.DZSM intervention led to increased IDE levels,augmented long-term potential(LTP)amplitude,and enhanced dendritic spine density and length.Moreover,DZSM intervention led to favourable changes in mitochondrial parameters,including ROS expression,MMP and ATP contents,and mitochondrial morphology.In conclusion,our findings delved into the realm of altered synaptic currents,mitophagy,and mitochondrial dynamics in AD,concurrently highlighting the therapeutic potential of DZSM intervention.展开更多
The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a prob...The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a probe must be designed depending on the thickness range that should be accessible. The need for a calibration of the material properties of a conducting plate to enable the measurement of its thickness has been removed. All that is needed is a probe with known dimensions and suitable hardware to create a current pulse and measure a transient magnetic induction.展开更多
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events a...Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it.展开更多
During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which...During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which was initially deployed in the Chukchi Sea.The buoy traversed the Chukchi Sea,Chukchi Abyssal Plain,Mendeleev Ridge,Makarov Basin,and Canada Basin over a period of 632 d.After returning to the Mendeleev Ridge,it continued to drift toward the pole.Overall,the track of the buoy reflected the characteristics of the transpolar drift and Chukchi Slope Current,as well as the inertial flow,cross-ridge surface flow,and even the surface disorganized flow for some time intervals.The results showed that:(1)the transpolar drift mainly occurs in the Chukchi Abyssal Plain,Mendeleev Ridge,and western Canada Basin to the east of the ridge where sea ice concentration is high,and the average northward flow velocity in the region between 79.41°N and 86.32°N was 5.1 cm/s;(2)the average surface velocity of the Chukchi Slope Current was 13.5 cm/s,and while this current moves westward along the continental slope,it also extends northwestward across the continental slope and flows to the deep sea;and(3)when sea ice concentration was less than 50%,the inertial flow was more significant(the maximum observed inertial flow was 26 cm/s,and the radius of the inertia circle was 3.6 km).展开更多
Organic photovoltaic(OPV) devices hold great promise for indoor light harvesting,offering a theoretical upper limit of power conversion efficiency that surpasses that of other photovoltaic technologies.However,the pre...Organic photovoltaic(OPV) devices hold great promise for indoor light harvesting,offering a theoretical upper limit of power conversion efficiency that surpasses that of other photovoltaic technologies.However,the presence of high leakage currents in OPV devices commonly constrains their effective performance under indoor conditions.In this study,we identified that the origin of the high leakage currents in OPV devices lay in pinhole defects present within the active layer(AL).By integrating an automated spin-coating strategy with sequential deposition processes,we achieved the compactness of the AL and minimized the occurrence of pinhole defects therein.Experimental findings demonstrated that with an increase in the number of deposition cycles,the density of pinhole defects in the AL underwent a marked reduction.Consequently,the leakage current experienced a substantial decrease by several orders of magnitude which achieved through well-calibrated AL deposition procedures.This enabled a twofold enhancement in the power conversion efficiency(PCE) of the OPV devices under conditions of indoor illumination.展开更多
This study presents an innovative theoretical approach to predicting the scour depth around a foundation in large-scale model tests based on small-scale model tests under combined waves and currents.In the present app...This study presents an innovative theoretical approach to predicting the scour depth around a foundation in large-scale model tests based on small-scale model tests under combined waves and currents.In the present approach,the hydrodynamic parameters were designed based on the Froude similitude criteria.To avoid the cohesive behavior,we scaled the sediment size based on the settling velocity similarity,i.e.,the suspended load similarity.Then,a series of different scale model tests was conducted to obtain the scour depth around the pile in combined waves and currents.The fitting formula of scour depth from the small-scale model tests was used to predict the results of large-scale tests.The accuracy of the present approach was validated by comparing the prediction values with experimental data of large-scale tests.Moreover,the correctness and accuracy of the present approach for foundations with complex shapes,e.g.,the tripod foundation,was further checked.The results indicated that the fitting line from small-scale model tests slightly overestimated the experimental data of large-scale model tests,and the errors can be accepted.In general,the present approach was applied to predict the maximum or equilibrium scour depth of the large-scale model tests around single piles and tripods.展开更多
Geomagnetic storms can result in large magnetic field disturbances and intense currents in the magnetosphere and even on the ground.As an important medium of momentum and energy transport among the solar wind,magnetos...Geomagnetic storms can result in large magnetic field disturbances and intense currents in the magnetosphere and even on the ground.As an important medium of momentum and energy transport among the solar wind,magnetosphere,and ionosphere,field-aligned currents(FACs)can also be strengthened in storm times.This study shows the responses of FACs in the plasma sheet boundary layer(PSBL)observed by the Magnetospheric Multiscale(MMS)spacecraft in different phases of a large storm that lasted from May 27,2017,to May 29,2017.Most of the FACs were carried by electrons,and several FACs in the storm time also contained sufficient ion FACs.The FAC magnitudes were larger in the storm than in the quiet period,and those in the main phase were the strongest.In this case,the direction of the FACs in the main phase showed no preference for tailward or earthward,whereas the direction of the FACs in the recovery phase was mostly tailward.The results suggest that the FACs in the PSBL are closely related to the storm and could be driven by activities in the tail region,where the energy transported from the solar wind to the magnetosphere is stored and released as the storm is evolving.Thus,the FACs are an important medium of energy transport between the tail and the ionosphere,and the PSBL is a significant magnetosphere–ionosphere coupling region in the nightside.展开更多
The northern South China Sea(NSCS)is significantly influenced by the Kuroshio intrusion and the coastal currents.Our knowledge on the roles of both currents on phytoplankton spatial variations is still inadequate.Here...The northern South China Sea(NSCS)is significantly influenced by the Kuroshio intrusion and the coastal currents.Our knowledge on the roles of both currents on phytoplankton spatial variations is still inadequate.Here,we investigated the concentrations of phytoplankton biomarkers and their proportions in surface suspended particles from 47 sites of the NSCS during summer of 2017 and 2019.Brassicasterol/epi-brassicasterol,dinosterol,and C37 alkenones were used as proxies of biomass for diatoms,dinoflagellates,and haptophytes,respectively,and their sum indicating total phytoplankton biomass.A three end-member mixing model was applied to quantitatively assess the influence extent of the Kuroshio intrusion and the coastal currents.Our results showed that the Kuroshio intrusion and the coastal currents contributed equally to the overall surface water masses in the study area;however,the two currents had distinct effects on the spatial distribution of phytoplankton.For phytoplankton biomass,the eutrophic coastal currents were likely to be the main controlling factors,while the impact of the Kuroshio intrusion was weak and stimulated significant increases in phytoplankton biomass only at certain boundary sites.For phytoplankton community structures,the Kuroshio and its intrusion were the main factors,resulting in an increase in the proportions of dinoflagellates and haptophytes.The proportion of diatoms slightly increased due to the influence of the coastal currents.Our study quantifies the effects of the Kuroshio and the coastal currents on phytoplankton in the NSCS in terms of hydrological parameters,providing an important basis for the understanding of ecological functions and biogeochemical cycles in marginal sea-open ocean boundary regions.展开更多
Autonomous underwater vehicle(AUV)-assisted data collection is an efficient approach to implementing smart ocean.However,the data collection in time-varying ocean currents is plagued by two critical issues:AUV yaw and...Autonomous underwater vehicle(AUV)-assisted data collection is an efficient approach to implementing smart ocean.However,the data collection in time-varying ocean currents is plagued by two critical issues:AUV yaw and sensor node movement.We propose an adaptive AUV-assisted data collection strategy for ocean currents to address these issues.First,we consider the energy consumption of an AUV in conjunction with the value of information(VoI)over the sensor nodes and formulate an optimization problem to maximize the VoI-energy ratio.The AUV yaw problem is then solved by deriving the AUV's reachable region in different ocean current environments and the optimal cruising direction to the target nodes.Finally,using the predicted VoI-energy ratio,we sequentially design a distributed path planning algorithm to select the next target node for AUV.The simulation results indicate that the proposed strategy can utilize ocean currents to aid AUV navigation,thereby reducing the AUV's energy consumption and ensuring timely data collection.展开更多
The magnetometer data obtained for 2008 from geomagnetic stations installed across Africa by magnetic data acquisition set (MAGDAS) have been used to study the ionospheric Sq current system in the equatorial and low-l...The magnetometer data obtained for 2008 from geomagnetic stations installed across Africa by magnetic data acquisition set (MAGDAS) have been used to study the ionospheric Sq current system in the equatorial and low-latitudes of Africa. The aim of this work is to separate the quiet-day field variations obtained in the equatorial and low latitude regions of Africa into their external and internal field contributions and then to use the paired external and internal coefficients of the SHA to determine the source current and induced currents. The method used involved a spherical harmonic analysis (SHA). This was applied in the separation of the internal and external field/current contribution to the Sq variations. The result shows that the variation in the currents is seen to be a dawn-to-dusk phenomenon with the variation in the external currents different from that of the internal currents both in amplitude and in phase. Furthermore, the seasonal variation in the external current maximizes during the March equinox and minimizes during the December solstice. The maximum current observed in AAB and ILR is due to the Equatorial Electrojet Current present in the AAB and ILR stations. Seasonal variation was observed in the geomagnetic component variations as well as in the currents. This is attributed to the position of the sun with respect to the earth at different months of the year. The equinoctial maximum is observed in external current intensity which occurred mostly during the March Equinox.展开更多
The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under th...The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under the loading of rocks.An electrical and mechanics test system was established in this paper to explore the impacts of loading rates on PSCs.The results indicated that PSC curves of different rocks had different change laws under low/high loading rates.When the loading rate was relatively low,PSC curves firstly changed gently and then increased exponentially.Under high loading rates,PSC curves experienced the rapid increase stage,gentle increase stage and sudden change stage.The compressive strength could greatly affect the peak PSC in case of rock failure.The loading rate was a key factor in average PSC.Under low loading rates,the variations of PSCs conformed to the damage charge model of fracture mechanics,while they did not at the fracture moment.Under high loading rates,the PSCs at low stress didn’t fit the model due to the stress impact effects.The experimental results could provide theoretical basis for the influence of loading rates on PSCs.展开更多
Submerged floating tunnel(SFTs)are typically subjected to complex external environmental and internal loads such as wave currents and traffic load.In this study,this problem is investigated through a finite element me...Submerged floating tunnel(SFTs)are typically subjected to complex external environmental and internal loads such as wave currents and traffic load.In this study,this problem is investigated through a finite element method able to account for fluid-structure interaction.The obtained results show that increasing the number of vehicles per unit length enhances the transverse vibrational displacements of the SFT cross sections.Under ultimate traffic load condition,one-way and two-way syntropic distributions can promote the dynamic responses of SFTs whereas two-way reverse distributions have the opposite effect.展开更多
Three long-term fixed acoustic Doppler current profilers were first used for investigating the vertical structure of tidal currents in Xuliujing Section of Changjiang River Estuary.Moreover,three different periods(spr...Three long-term fixed acoustic Doppler current profilers were first used for investigating the vertical structure of tidal currents in Xuliujing Section of Changjiang River Estuary.Moreover,three different periods(spring,summer and fall)were also considered for investigating seasonal variations.The semi-diurnal tides were the most energetic,with along-channel speed of up to 80 cm/s for M_(2)constituent,which dominates at all stations with percent energy up to 65%–75%during seasons.The shape of tidal ellipses of the most energetic semi-diurnal constituent M_(2)showed obvious polarization of the flow paralleling to the riverbank,with the minor semi-axis being generally less than 20%of the major one.The maximum velocity of mean current is appeared in top layers at all the three stations,and the velocity decreased with the depth.The seasonal variations of direction are also observed,which is probably caused by complex local topography since the erosion and deposition in riverbed.Observed vertical variation of four parameters of M_(2)ellipses,agreed well with the optimally fit frictional solutions in top and middle layers.However,there was an obvious difference between frictional model and observed data in the lower water column.Discrepancies are probably on account of stratification,which strengthens in summer and fall due to the freshening influence of the Changjiang River Estuary outflow.展开更多
We investigate the effect of Rashba spin-orbit coupling(RSOC)on photoconductivities of rectified currents in monolayer graphene with exchange field and sublattice potential.The system shows that the photoconductivitie...We investigate the effect of Rashba spin-orbit coupling(RSOC)on photoconductivities of rectified currents in monolayer graphene with exchange field and sublattice potential.The system shows that the photoconductivities of resonant shift and injection current contributions are nonzero,while the photoconductivities of non-resonant shift current contribution are zero.We find that the RSOC induces a warping term,which leads to the nonzero rectified currents.Moreover,the photoconductivities of resonant injection(shift)current contribution are(not)related to the relaxation rate.The similar behavior can be found in other Dirac materials,and our findings provide a way to tune the nonlinear transport properties of Dirac materials.展开更多
The long-distance movement of turbidity currents in submarine canyons can transport large amounts of sediment to deep-sea plains.Previous studies show obvious differences in the turbidity current velocities derived fr...The long-distance movement of turbidity currents in submarine canyons can transport large amounts of sediment to deep-sea plains.Previous studies show obvious differences in the turbidity current velocities derived from the multiple cables damage events ranging from 5.9 to 28.0 m/s and those of field observations between 0.15 and 7.2 m/s.Therefore,questions remain regarding whether a turbid fluid in an undersea environment can flow through a submarine canyon for a long distance at a high speed.A new model based on weakly stable sediment is proposed(proposed failure propagation model for weakly stable sediments,WS S-PFP model for short)to explain the high-speed and long-range motion of turbidity currents in submarine canyons through the combination of laboratory tests and numerical analogs.The model is based on two mechanisms:1)the original turbidity current triggers the destabilization of the weakly stable sediment bed and promotes the destabilization and transport of the soft sediment in the downstream direction and 2)the excitation wave that forms when the original turbidity current moves into the canyon leads to the destabilization and transport of the weakly stable sediment in the downstream direction.The proposed model will provide dynamic process interpretation for the study of deep-sea deposition,pollutant transport,and optical cable damage.展开更多
The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observatio...The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observations. Then the variations of tidal currents and suspended sediment concentration caused by reclamation and artificial islands projects are simulated. The results show that the impacts are limited around the project areas. After the projects, the fan-shaped, Jianggang centered tidal current pattern would be replaced by a pattern which is formed by two tidal paths. One locates at the Xiyang channel in north-south direction, and the other locates at the Huangshayang channel in east-west direction. The reclamation of Tiaozini separates the waters into south portion and north portion. The changes of sediment concentrations coincide with those of currents. Both the sediment concentrations and tidal currents increase at the northwest of Dongsha and the south of Gaoni, while both decrease at the north and south of Tiaozini, and the east and southwest of Dongsha.展开更多
Based on the diurnal consecutively observed data in the offshore area of Jiaonan in 2005, the paper tries to make a preliminary analysis of the specificity of ocean currents, tidal current property and residual curren...Based on the diurnal consecutively observed data in the offshore area of Jiaonan in 2005, the paper tries to make a preliminary analysis of the specificity of ocean currents, tidal current property and residual current property in the area in observing dates. Then on the basis of observed data analysis and by employing the split-step method, the paper conducts a numerical simulation of the tidal current field, which can show the M2 tidal constituent tidal wave system, current ellipse distribution, maximum current velocity distribution and time-dependent current field. The calculated results agree well with the observed data, which can on the one hand reflect the basic specificities of temporal and spatial distribution of the M2 tidal constituent current field to some extent, and, on the other hand, offer more information about the hydrodynamic condition. So the paper would provide a scientific basis for the making of sea environment protection plans in the offshore area of Jiaonan under certain conditions.展开更多
The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the Nor...The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the North Channel of Changjiang Estuary. They were assimilated with the measured data in 2003, 2004, 2006 and 2007, using the tidal range's proportion conversion. Variations in TCD and TCV, preferential flow and SSC have been calculated. Influences of typical engineering projects such as Qingcaosha fresh water reservoir, Yangtze River Bridge, and land reclamation on the ebb and flood TCD, TCV and SSC in the North Channel for the last 10 years are discussed. The results show that: (1) currently, in the upper part of North Channel, the ebb tide dominates; after the construction of the typical projects, ebb TCD and TCV tends to be larger and the vertical average ebb and flood SSC decrease during the flood season while SSC increases during the dry season; (2) changes in the vertical average TCV are mainly contributed by seasonal runoff variation during the flood season, which is larger in the flood season than that in the dry season; the controlling parameters of increasing ebb TCD and TCV are those large-scale engineering projects in the North Channel; variation in SSC may result mainly from the reduction of basin annual sediment loads, large-scale nearshore projects and so on.展开更多
Based on 25 hours shipboard ADCP measurements across semi-enclosed bay mouth(Kemen Channel), time series of tidal currents over 12 sites, which distribute evenly along the transect, were constructed to improve our u...Based on 25 hours shipboard ADCP measurements across semi-enclosed bay mouth(Kemen Channel), time series of tidal currents over 12 sites, which distribute evenly along the transect, were constructed to improve our understanding of tidal characteristics and residuals in this region. The tidal currents in Kemen Channel were identified as the regular semidiurnal and reversing tidal flows, with its behaviour more like standing waves. Moreover, the flood currents in the lower layers were found to be ahead of that in the upper layers and vice versa for ebb tides. The major of tidal ellipse for M2 constituent was found to be larger close to the southern side of the channel, with its incline also increasing toward the south. The signs of M4 constituent were also found mainly nearby the end points of this transect, indicating the importance of nonlinearity in tidal dynamics due to the shallower topography. A two-layer structure was found for the residual currents in Kemen Channel, flowing northeastwardly out of the Bay in upper 20m and southwestwardly into the bay in the lowers. Besides approximate 4.81×10^8 m^3 water exchanges were determined between the Luoyuan Bay and outer seas by the calculation of tidal flux through Kemen Channel.展开更多
基金National Natural Science Foundation of China(Grant No.:82374317)State Key Program of National Natural Science of China(Grant Nos.:82130119 and 82130118)+4 种基金Postdoctoral Research Foundation of China(Grant No.:2021M690450)Traditional Chinese Medicine Research Project of Health Commission of Hubei Province(Grant No.:ZY2021M017)Hubei University of Chinese Medicine Funds for Distinguished Young Scholars(Grant No.:2022ZZXJ004)National Natural Science Foundation of China(Grant No.:82174210)Fundamental Research Funds for the Central Public Welfare Research Institutes(Grant No.:ZZ14-FL-005).
文摘Emerging research suggests a potential association of progression of Alzheimer's disease(AD)with alterations in synaptic currents and mitochondrial dynamics.However,the specific associations between these pathological changes remain unclear.In this study,we utilized Aβ42-induced AD rats and primary neural cells as in vivo and in vitro models.The investigations included behavioural tests,brain magnetic resonance imaging(MRI),liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis,Nissl staining,thioflavin-S staining,enzyme-linked immunosorbent assay,Golgi-Cox staining,transmission electron microscopy(TEM),immunofluorescence staining,proteomics,adenosine triphosphate(ATP)detection,mitochondrial membrane potential(MMP)and reactive oxygen species(ROS)assessment,mitochondrial morphology analysis,electrophysiological studies,Western blotting,and molecular docking.The results revealed changes in synaptic currents,mitophagy,and mitochondrial dynamics in the AD models.Remarkably,intervention with Dengzhan Shengmai(DZSM)capsules emerged as a pivotal element in this investigation.Aβ42-induced synaptic dysfunction was significantly mitigated by DZSM intervention,which notably amplified the frequency and amplitude of synaptic transmission.The cognitive impairment observed in AD rats was ameliorated and accompanied by robust protection against structural damage in key brain regions,including the hippocampal CA3,primary cingular cortex,prelimbic system,and dysgranular insular cortex.DZSM intervention led to increased IDE levels,augmented long-term potential(LTP)amplitude,and enhanced dendritic spine density and length.Moreover,DZSM intervention led to favourable changes in mitochondrial parameters,including ROS expression,MMP and ATP contents,and mitochondrial morphology.In conclusion,our findings delved into the realm of altered synaptic currents,mitophagy,and mitochondrial dynamics in AD,concurrently highlighting the therapeutic potential of DZSM intervention.
文摘The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a probe must be designed depending on the thickness range that should be accessible. The need for a calibration of the material properties of a conducting plate to enable the measurement of its thickness has been removed. All that is needed is a probe with known dimensions and suitable hardware to create a current pulse and measure a transient magnetic induction.
基金funded by the National Research Developm ent and Innovation Office (NKFIH-K1468 73) (to BP)。
文摘Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it.
基金The Fundamental Research Fund Project of the First Institute of OceanographyMinistry of Natural Resources+1 种基金under contract No.GY022Y07the National Natural Science Foundation of China under contract No.42106232。
文摘During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which was initially deployed in the Chukchi Sea.The buoy traversed the Chukchi Sea,Chukchi Abyssal Plain,Mendeleev Ridge,Makarov Basin,and Canada Basin over a period of 632 d.After returning to the Mendeleev Ridge,it continued to drift toward the pole.Overall,the track of the buoy reflected the characteristics of the transpolar drift and Chukchi Slope Current,as well as the inertial flow,cross-ridge surface flow,and even the surface disorganized flow for some time intervals.The results showed that:(1)the transpolar drift mainly occurs in the Chukchi Abyssal Plain,Mendeleev Ridge,and western Canada Basin to the east of the ridge where sea ice concentration is high,and the average northward flow velocity in the region between 79.41°N and 86.32°N was 5.1 cm/s;(2)the average surface velocity of the Chukchi Slope Current was 13.5 cm/s,and while this current moves westward along the continental slope,it also extends northwestward across the continental slope and flows to the deep sea;and(3)when sea ice concentration was less than 50%,the inertial flow was more significant(the maximum observed inertial flow was 26 cm/s,and the radius of the inertia circle was 3.6 km).
基金Fundamental Research Funds for the Central Universities,China (No. 2232022A13)。
文摘Organic photovoltaic(OPV) devices hold great promise for indoor light harvesting,offering a theoretical upper limit of power conversion efficiency that surpasses that of other photovoltaic technologies.However,the presence of high leakage currents in OPV devices commonly constrains their effective performance under indoor conditions.In this study,we identified that the origin of the high leakage currents in OPV devices lay in pinhole defects present within the active layer(AL).By integrating an automated spin-coating strategy with sequential deposition processes,we achieved the compactness of the AL and minimized the occurrence of pinhole defects therein.Experimental findings demonstrated that with an increase in the number of deposition cycles,the density of pinhole defects in the AL underwent a marked reduction.Consequently,the leakage current experienced a substantial decrease by several orders of magnitude which achieved through well-calibrated AL deposition procedures.This enabled a twofold enhancement in the power conversion efficiency(PCE) of the OPV devices under conditions of indoor illumination.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.202061027)the National Natural Science Foundation of China(No.41572247)。
文摘This study presents an innovative theoretical approach to predicting the scour depth around a foundation in large-scale model tests based on small-scale model tests under combined waves and currents.In the present approach,the hydrodynamic parameters were designed based on the Froude similitude criteria.To avoid the cohesive behavior,we scaled the sediment size based on the settling velocity similarity,i.e.,the suspended load similarity.Then,a series of different scale model tests was conducted to obtain the scour depth around the pile in combined waves and currents.The fitting formula of scour depth from the small-scale model tests was used to predict the results of large-scale tests.The accuracy of the present approach was validated by comparing the prediction values with experimental data of large-scale tests.Moreover,the correctness and accuracy of the present approach for foundations with complex shapes,e.g.,the tripod foundation,was further checked.The results indicated that the fitting line from small-scale model tests slightly overestimated the experimental data of large-scale model tests,and the errors can be accepted.In general,the present approach was applied to predict the maximum or equilibrium scour depth of the large-scale model tests around single piles and tripods.
基金funded by the National Natural Science Foundation of China(NSFCGrant Nos.42204177,42274219,41974205,42130204,42241155,and 42241133)+5 种基金the Guangdong Basic and Applied Basic Research Foundation-Natural Science Foundation of Guangdong(Grant Nos.2022A1515010257,2022A1515011698,and 2023A1515030132)the Shenzhen Science and Technology Research Program(Grant Nos.JCYJ20210324121403009 and JCYJ20210324121412034)the Macao foundation,the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2022041)the Shenzhen Key Laboratory Launching Project(Grant No.ZDSYS20210702140800001)the pre-research project on Civil Aerospace Technologies(Grant No.D020103)funded by the China National Space Administration.YuanQiang Chen was also funded by China Postdoctoral Science Foundation(Grant No.2022M720944)supported by the Chinese Academy of Sciences Center for Excellence in Comparative Planetology.
文摘Geomagnetic storms can result in large magnetic field disturbances and intense currents in the magnetosphere and even on the ground.As an important medium of momentum and energy transport among the solar wind,magnetosphere,and ionosphere,field-aligned currents(FACs)can also be strengthened in storm times.This study shows the responses of FACs in the plasma sheet boundary layer(PSBL)observed by the Magnetospheric Multiscale(MMS)spacecraft in different phases of a large storm that lasted from May 27,2017,to May 29,2017.Most of the FACs were carried by electrons,and several FACs in the storm time also contained sufficient ion FACs.The FAC magnitudes were larger in the storm than in the quiet period,and those in the main phase were the strongest.In this case,the direction of the FACs in the main phase showed no preference for tailward or earthward,whereas the direction of the FACs in the recovery phase was mostly tailward.The results suggest that the FACs in the PSBL are closely related to the storm and could be driven by activities in the tail region,where the energy transported from the solar wind to the magnetosphere is stored and released as the storm is evolving.Thus,the FACs are an important medium of energy transport between the tail and the ionosphere,and the PSBL is a significant magnetosphere–ionosphere coupling region in the nightside.
基金The study was supported by the National Natural Science Foundation of China(No.41876118)the Global Climate Changes and Air-Sea Interaction Program(No.GASI-02-PAC-ST-Wwin)This is MCTL(Key Laboratory of Marine Chemistry Theory and Technology)contribution#281.
文摘The northern South China Sea(NSCS)is significantly influenced by the Kuroshio intrusion and the coastal currents.Our knowledge on the roles of both currents on phytoplankton spatial variations is still inadequate.Here,we investigated the concentrations of phytoplankton biomarkers and their proportions in surface suspended particles from 47 sites of the NSCS during summer of 2017 and 2019.Brassicasterol/epi-brassicasterol,dinosterol,and C37 alkenones were used as proxies of biomass for diatoms,dinoflagellates,and haptophytes,respectively,and their sum indicating total phytoplankton biomass.A three end-member mixing model was applied to quantitatively assess the influence extent of the Kuroshio intrusion and the coastal currents.Our results showed that the Kuroshio intrusion and the coastal currents contributed equally to the overall surface water masses in the study area;however,the two currents had distinct effects on the spatial distribution of phytoplankton.For phytoplankton biomass,the eutrophic coastal currents were likely to be the main controlling factors,while the impact of the Kuroshio intrusion was weak and stimulated significant increases in phytoplankton biomass only at certain boundary sites.For phytoplankton community structures,the Kuroshio and its intrusion were the main factors,resulting in an increase in the proportions of dinoflagellates and haptophytes.The proportion of diatoms slightly increased due to the influence of the coastal currents.Our study quantifies the effects of the Kuroshio and the coastal currents on phytoplankton in the NSCS in terms of hydrological parameters,providing an important basis for the understanding of ecological functions and biogeochemical cycles in marginal sea-open ocean boundary regions.
基金supported by the National Natural Science Foundation of China(62071472,62101556)the Natural Science Foundation of Jiangsu province(BK20200650,BK20210489)the Future Network Scientific Research Fund Project(FNSRFP2021-YB-12)。
文摘Autonomous underwater vehicle(AUV)-assisted data collection is an efficient approach to implementing smart ocean.However,the data collection in time-varying ocean currents is plagued by two critical issues:AUV yaw and sensor node movement.We propose an adaptive AUV-assisted data collection strategy for ocean currents to address these issues.First,we consider the energy consumption of an AUV in conjunction with the value of information(VoI)over the sensor nodes and formulate an optimization problem to maximize the VoI-energy ratio.The AUV yaw problem is then solved by deriving the AUV's reachable region in different ocean current environments and the optimal cruising direction to the target nodes.Finally,using the predicted VoI-energy ratio,we sequentially design a distributed path planning algorithm to select the next target node for AUV.The simulation results indicate that the proposed strategy can utilize ocean currents to aid AUV navigation,thereby reducing the AUV's energy consumption and ensuring timely data collection.
文摘The magnetometer data obtained for 2008 from geomagnetic stations installed across Africa by magnetic data acquisition set (MAGDAS) have been used to study the ionospheric Sq current system in the equatorial and low-latitudes of Africa. The aim of this work is to separate the quiet-day field variations obtained in the equatorial and low latitude regions of Africa into their external and internal field contributions and then to use the paired external and internal coefficients of the SHA to determine the source current and induced currents. The method used involved a spherical harmonic analysis (SHA). This was applied in the separation of the internal and external field/current contribution to the Sq variations. The result shows that the variation in the currents is seen to be a dawn-to-dusk phenomenon with the variation in the external currents different from that of the internal currents both in amplitude and in phase. Furthermore, the seasonal variation in the external current maximizes during the March equinox and minimizes during the December solstice. The maximum current observed in AAB and ILR is due to the Equatorial Electrojet Current present in the AAB and ILR stations. Seasonal variation was observed in the geomagnetic component variations as well as in the currents. This is attributed to the position of the sun with respect to the earth at different months of the year. The equinoctial maximum is observed in external current intensity which occurred mostly during the March Equinox.
基金the State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(No.SKLCRSM22KF011)the National Natural Science Foundation of China(Nos.52130411,52104191,51974120,and 51904103)+1 种基金the Natural Science Foundation of Hunan Province(No.2021JJ40204)the Science and Technology Innovation Program of Hunan Province(No.2020RC3047).
文摘The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under the loading of rocks.An electrical and mechanics test system was established in this paper to explore the impacts of loading rates on PSCs.The results indicated that PSC curves of different rocks had different change laws under low/high loading rates.When the loading rate was relatively low,PSC curves firstly changed gently and then increased exponentially.Under high loading rates,PSC curves experienced the rapid increase stage,gentle increase stage and sudden change stage.The compressive strength could greatly affect the peak PSC in case of rock failure.The loading rate was a key factor in average PSC.Under low loading rates,the variations of PSCs conformed to the damage charge model of fracture mechanics,while they did not at the fracture moment.Under high loading rates,the PSCs at low stress didn’t fit the model due to the stress impact effects.The experimental results could provide theoretical basis for the influence of loading rates on PSCs.
基金supported by Chongqing Natural Science Foundation(Grant No.cstc2020jcyj-msxmX0923).
文摘Submerged floating tunnel(SFTs)are typically subjected to complex external environmental and internal loads such as wave currents and traffic load.In this study,this problem is investigated through a finite element method able to account for fluid-structure interaction.The obtained results show that increasing the number of vehicles per unit length enhances the transverse vibrational displacements of the SFT cross sections.Under ultimate traffic load condition,one-way and two-way syntropic distributions can promote the dynamic responses of SFTs whereas two-way reverse distributions have the opposite effect.
基金The National Natural Science Foundation of China under contract Nos 41806114 and 42266006the Jiangxi Provincial Natural Science Foundation under contract Nos 20202ACBL214019,20181BAB216031 and 20212BBE53031+2 种基金the Technological Innovation and Application Development in Chongqing under contract No.CSTB2022TIAD-GPX0016the Incentive and Guidance Project of Scientific Research Performance for Scientific Research Institutes in Chongqing under contract No.cstc2021jxjl120017the Open Fund of the Key Laboratory of Marine Environmental Survey Technology and Application of Ministry of Natural Resources under contract Nos MESTA-2020-A002 and MESTA-2021-B001.
文摘Three long-term fixed acoustic Doppler current profilers were first used for investigating the vertical structure of tidal currents in Xuliujing Section of Changjiang River Estuary.Moreover,three different periods(spring,summer and fall)were also considered for investigating seasonal variations.The semi-diurnal tides were the most energetic,with along-channel speed of up to 80 cm/s for M_(2)constituent,which dominates at all stations with percent energy up to 65%–75%during seasons.The shape of tidal ellipses of the most energetic semi-diurnal constituent M_(2)showed obvious polarization of the flow paralleling to the riverbank,with the minor semi-axis being generally less than 20%of the major one.The maximum velocity of mean current is appeared in top layers at all the three stations,and the velocity decreased with the depth.The seasonal variations of direction are also observed,which is probably caused by complex local topography since the erosion and deposition in riverbed.Observed vertical variation of four parameters of M_(2)ellipses,agreed well with the optimally fit frictional solutions in top and middle layers.However,there was an obvious difference between frictional model and observed data in the lower water column.Discrepancies are probably on account of stratification,which strengthens in summer and fall due to the freshening influence of the Changjiang River Estuary outflow.
基金Project supported by the Shandong Province Natural Science Foundation(Grant No.ZR2021MF077)。
文摘We investigate the effect of Rashba spin-orbit coupling(RSOC)on photoconductivities of rectified currents in monolayer graphene with exchange field and sublattice potential.The system shows that the photoconductivities of resonant shift and injection current contributions are nonzero,while the photoconductivities of non-resonant shift current contribution are zero.We find that the RSOC induces a warping term,which leads to the nonzero rectified currents.Moreover,the photoconductivities of resonant injection(shift)current contribution are(not)related to the relaxation rate.The similar behavior can be found in other Dirac materials,and our findings provide a way to tune the nonlinear transport properties of Dirac materials.
基金Supported by the National Natural Science Foundation of China(Nos.42206055,41976049)the Taishan Scholar Project of Shandong Province(No.TS20190913)the Fundamental Research Funds for the Central Universities(No.202061028)。
文摘The long-distance movement of turbidity currents in submarine canyons can transport large amounts of sediment to deep-sea plains.Previous studies show obvious differences in the turbidity current velocities derived from the multiple cables damage events ranging from 5.9 to 28.0 m/s and those of field observations between 0.15 and 7.2 m/s.Therefore,questions remain regarding whether a turbid fluid in an undersea environment can flow through a submarine canyon for a long distance at a high speed.A new model based on weakly stable sediment is proposed(proposed failure propagation model for weakly stable sediments,WS S-PFP model for short)to explain the high-speed and long-range motion of turbidity currents in submarine canyons through the combination of laboratory tests and numerical analogs.The model is based on two mechanisms:1)the original turbidity current triggers the destabilization of the weakly stable sediment bed and promotes the destabilization and transport of the soft sediment in the downstream direction and 2)the excitation wave that forms when the original turbidity current moves into the canyon leads to the destabilization and transport of the weakly stable sediment in the downstream direction.The proposed model will provide dynamic process interpretation for the study of deep-sea deposition,pollutant transport,and optical cable damage.
文摘The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observations. Then the variations of tidal currents and suspended sediment concentration caused by reclamation and artificial islands projects are simulated. The results show that the impacts are limited around the project areas. After the projects, the fan-shaped, Jianggang centered tidal current pattern would be replaced by a pattern which is formed by two tidal paths. One locates at the Xiyang channel in north-south direction, and the other locates at the Huangshayang channel in east-west direction. The reclamation of Tiaozini separates the waters into south portion and north portion. The changes of sediment concentrations coincide with those of currents. Both the sediment concentrations and tidal currents increase at the northwest of Dongsha and the south of Gaoni, while both decrease at the north and south of Tiaozini, and the east and southwest of Dongsha.
文摘Based on the diurnal consecutively observed data in the offshore area of Jiaonan in 2005, the paper tries to make a preliminary analysis of the specificity of ocean currents, tidal current property and residual current property in the area in observing dates. Then on the basis of observed data analysis and by employing the split-step method, the paper conducts a numerical simulation of the tidal current field, which can show the M2 tidal constituent tidal wave system, current ellipse distribution, maximum current velocity distribution and time-dependent current field. The calculated results agree well with the observed data, which can on the one hand reflect the basic specificities of temporal and spatial distribution of the M2 tidal constituent current field to some extent, and, on the other hand, offer more information about the hydrodynamic condition. So the paper would provide a scientific basis for the making of sea environment protection plans in the offshore area of Jiaonan under certain conditions.
文摘The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the North Channel of Changjiang Estuary. They were assimilated with the measured data in 2003, 2004, 2006 and 2007, using the tidal range's proportion conversion. Variations in TCD and TCV, preferential flow and SSC have been calculated. Influences of typical engineering projects such as Qingcaosha fresh water reservoir, Yangtze River Bridge, and land reclamation on the ebb and flood TCD, TCV and SSC in the North Channel for the last 10 years are discussed. The results show that: (1) currently, in the upper part of North Channel, the ebb tide dominates; after the construction of the typical projects, ebb TCD and TCV tends to be larger and the vertical average ebb and flood SSC decrease during the flood season while SSC increases during the dry season; (2) changes in the vertical average TCV are mainly contributed by seasonal runoff variation during the flood season, which is larger in the flood season than that in the dry season; the controlling parameters of increasing ebb TCD and TCV are those large-scale engineering projects in the North Channel; variation in SSC may result mainly from the reduction of basin annual sediment loads, large-scale nearshore projects and so on.
文摘Based on 25 hours shipboard ADCP measurements across semi-enclosed bay mouth(Kemen Channel), time series of tidal currents over 12 sites, which distribute evenly along the transect, were constructed to improve our understanding of tidal characteristics and residuals in this region. The tidal currents in Kemen Channel were identified as the regular semidiurnal and reversing tidal flows, with its behaviour more like standing waves. Moreover, the flood currents in the lower layers were found to be ahead of that in the upper layers and vice versa for ebb tides. The major of tidal ellipse for M2 constituent was found to be larger close to the southern side of the channel, with its incline also increasing toward the south. The signs of M4 constituent were also found mainly nearby the end points of this transect, indicating the importance of nonlinearity in tidal dynamics due to the shallower topography. A two-layer structure was found for the residual currents in Kemen Channel, flowing northeastwardly out of the Bay in upper 20m and southwestwardly into the bay in the lowers. Besides approximate 4.81×10^8 m^3 water exchanges were determined between the Luoyuan Bay and outer seas by the calculation of tidal flux through Kemen Channel.