期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sound absorption characteristic of micro-helix metamaterial by 3D printing 被引量:1
1
作者 Nansha Gao Hong Hou 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第2期63-67,共5页
We present the design of micro-helix metamaterial supporting high sound absorption characteristic by 3D printing. The sample structure which is fabricated out of polylactide (PLA) material, many micro-helix are arra... We present the design of micro-helix metamaterial supporting high sound absorption characteristic by 3D printing. The sample structure which is fabricated out of polylactide (PLA) material, many micro-helix are arranged by periodic arrays on XY plane. Experiment measurement results show that different geometrical dimensions of helix vestibule and cavity depth have a great effect on sound absorption coefficient. Physical mechanism depends on the friction and viscosity between the air and the helix vestibule. This work shows great potential of micro-structure metamaterial in noise control applications require light weight and large rigid of sound absorption. 展开更多
关键词 Low frequency sound absorption Micro-helix metamaterial 3D printing Helix vestibule cavity depth
下载PDF
Interaction between a Liquid Surface and an Impinging Gas Jet
2
作者 Miguel A. Barron Dulce Y. Medina Joan Reyes 《World Journal of Engineering and Technology》 2021年第4期793-803,共11页
The water-air and Wood’s metal-air systems are modeled by means of Computational Fluid Dynamics to study the interaction between a liquid surface and an impinging air jet under the near field blowing conditions. The ... The water-air and Wood’s metal-air systems are modeled by means of Computational Fluid Dynamics to study the interaction between a liquid surface and an impinging air jet under the near field blowing conditions. The effect of the air jet velocity, the height of the injection lance, and the density of the liquid on the depth of the formed cavity is numerically studied. The CFD results of the cavity depth are compared with results previously reported by other authors. The emergence of the splashing phenomenon is predicted in terms of the critical velocity for each liquid-air system. Besides, the blowing number indicates that the drop generation rate is not significant for jet velocities below the critical velocity, and therefore neither the splashing is significant. 展开更多
关键词 cavity depth CFD Impinging Gas Jet Lance Height Liquid-Gas Interaction SPLASHING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部