期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Clinical significance of platelet mononuclear cell aggregates in patients with sepsis and acute respiratory distress syndrome
1
作者 Chong-Min Huang Juan-Juan Li Wei-Ke Wei 《World Journal of Clinical Cases》 SCIE 2024年第5期966-972,共7页
BACKGROUND The diagnosis of sepsis combined with acute respiratory distress syndrome(ARDS)has increased owing to the enhanced awareness among medical profes-sionals and the continuous development of modern medical tec... BACKGROUND The diagnosis of sepsis combined with acute respiratory distress syndrome(ARDS)has increased owing to the enhanced awareness among medical profes-sionals and the continuous development of modern medical technologies,while early diagnosis of ARDS still lacks specific biomarkers.One of the main patho-genic mechanisms of sepsis-associated ARDS involves the actions of various pathological injuries and inflammatory factors,such as platelet and white blood cells activation,leading to an increase of surface adhesion molecules.These adhesion molecules further form platelet-white blood cell aggregates,including platelet-mononuclear cell aggregates(PMAs).PMAs has been identified as one of the markers of platelet activation,here we hypothesize that PMAs might play a potential biomarker for the early diagnosis of this complication.METHODS We selected 72 hospitalized patients diagnosed with sepsis as the study population between March 2019 and March 2022.Among them,30 patients with sepsis and ARDS formed the study group,while 42 sepsis patients without ARDS comprised the control group.After diagnosis,venous blood samples were imme-diately collected from all patients.Flow cytometry was employed to analyze the expression of PMAs,platelet neutrophil aggregates(PNAs),and platelet aggregates(PLyAs)in the serum.Additionally,the Acute Physiology and Chronic Health Evaluation(APACHE)II score was calculated for each patient,and receiver operating characteristic curves were generated to assess diagnostic value.RESULTS The study found that the levels of PNAs and PLyAs in the serum of the study group were higher than those in the control group,but the difference was not statistically significant(P>0.05).However,the expression of PMAs in the serum of the study group was significantly upregulated(P<0.05)and positively correlated with the APACHE II score(r=0.671,P<0.05).When using PMAs as a diagnostic indicator,the area under the curve value was 0.957,indicating a high diagnostic value(P<0.05).Furthermore,the optimal cutoff value was 8.418%,with a diagnostic sensitivity of 0.819 and specificity of 0.947.CONCLUSION In summary,the serum levels of PMAs significantly increase in patients with sepsis and ARDS.Therefore,serum PMAs have the potential to become a new biomarker for clinically diagnosing sepsis complicated by ARDS. 展开更多
关键词 SEPSIS Acute respiratory distress syndrome Platelet leukocyte aggregates Platelet mononuclear cell aggregates Biomarker
下载PDF
3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration 被引量:7
2
作者 Qingtao Li Sheng Xu +7 位作者 Qi Feng Qiyuan Dai Longtao Yao Yichen Zhang Huichang Gao Hua Dong Dafu Chen Xiaodong Cao 《Bioactive Materials》 SCIE 2021年第10期3396-3410,共15页
Hydrogel scaffolds are attractive for tissue defect repair and reorganization because of their human tissue-like characteristics.However,most hydrogels offer limited cell growth and tissue formation ability due to the... Hydrogel scaffolds are attractive for tissue defect repair and reorganization because of their human tissue-like characteristics.However,most hydrogels offer limited cell growth and tissue formation ability due to their submicron-or nano-sized gel networks,which restrict the supply of oxygen,nutrients and inhibit the proliferation and differentiation of encapsulated cells.In recent years,3D printed hydrogels have shown great potential to overcome this problem by introducing macro-pores within scaffolds.In this study,we fabricated a macroporous hydrogel scaffold through horseradish peroxidase(HRP)-mediated crosslinking of silk fibroin(SF)and tyramine-substituted gelatin(GT)by extrusion-based low-temperature 3D printing.Through physicochemical characterization,we found that this hydrogel has excellent structural stability,suitable mechanical properties,and an adjustable degradation rate,thus satisfying the requirements for cartilage reconstruction.Cell suspension and aggregate seeding methods were developed to assess the inoculation efficiency of the hydrogel.Moreover,the chondrogenic differentiation of stem cells was explored.Stem cells in the hydrogel differentiated into hyaline cartilage when the cell aggregate seeding method was used and into fibrocartilage when the cell suspension was used.Finally,the effect of the hydrogel and stem cells were investigated in a rabbit cartilage defect model.After implantation for 12 and 16 weeks,histological evaluation of the sections was performed.We found that the enzymatic cross-linked and methanol treatment SF5GT15 hydrogel combined with cell aggregates promoted articular cartilage regeneration.In summary,this 3D printed macroporous SF-GT hydrogel combined with stem cell aggregates possesses excellent potential for application in cartilage tissue repair and regeneration. 展开更多
关键词 Silk hydrogel 3D printing Enzymatic cross-linking cell aggregate seeding Cartilage regeneration
原文传递
Modeling human hypertrophic scars with 3D preformed cellular aggregates bioprinting 被引量:2
3
作者 Yao Bin Zhu Dongzhen +10 位作者 Cui Xiaoli Enhe jirigala Song Wei Li Zhao Hu Tian Zhu Ping Li Jianjun Wang Yuzhen Zhang Yijie Fu Xiaobing Huang Sha 《Bioactive Materials》 SCIE 2022年第4期247-254,共8页
The therapeutic interventions of human hypertrophic scars(HHS)remain puzzle largely due to the lack of accepted models.Current HHS models are limited by their inability to mimic native scar architecture and associated... The therapeutic interventions of human hypertrophic scars(HHS)remain puzzle largely due to the lack of accepted models.Current HHS models are limited by their inability to mimic native scar architecture and associated pathological microenvironments.Here,we create a 3D functional HHS model by preformed cellular aggregates(PCA)bioprinting,firstly developing bioink from scar decellularized extracellular matrix(ECM)and alginate-gelatin(Alg-Gel)hydrogel with suitable physical properties to mimic the microenvironmental factors,then pre-culturing patient-derived fibroblasts in this bioink to preform the topographic cellular aggregates for sequent printing.We confirm the cell aggregates preformed in bioink displayed well defined aligned structure and formed functional scar tissue self-organization after bioprinting,hence showing the potential of creating HHS models.Notably,these HHS models exhibit characteristics of early-stage HHS in gene and protein expression,which significantly activated signaling pathway related to inflammation and cell proliferation,and recapitulate in vivo tissue dynamics of scar forming.We also use the in vitro and in vivo models to define the clinically observed effects to treatment with concurrent anti-scarring drugs,and the data show that it can be used to evaluate the potential therapeutic target for drug testing.The ideal humanized scar models we present should prove useful for studying critical mechanisms underlying HHS and to rapidly test new drug targets and develop patient-specific optimal therapeutic strategies in the future. 展开更多
关键词 Hypertrophic scar model Preformed cell aggregates 3D bioprinting Microenvironmental cues Drug screening
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部