BACKGROUND In vitro expansion to increase numbers of hematopoietic stem cells(HSCs)in cord blood could improve clinical efficacy of this vital resource.Nicotinamide(NAM)can promote HSC expansion ex vivo,but its effect...BACKGROUND In vitro expansion to increase numbers of hematopoietic stem cells(HSCs)in cord blood could improve clinical efficacy of this vital resource.Nicotinamide(NAM)can promote HSC expansion ex vivo,but its effect on hematopoietic stem and progenitor cells(HSPCs,CD34^(+)CD38)and functional subtypes of HSCs-shortterm repopulating HSCs(ST-HSCs,CD34^(+)CD38CD45RACD49f^(+))and long-term repopulating HSCs(LT-HSCs,CD34^(+)CD38CD45RACD49f^(+)CD90^(+))is not yet known.As a sirtuin 1(SIRT1)inhibitor,NAM participates in regulating cell adhesion,polarity,migration,proliferation,and differentiation.However,SIRT1 exhibits dual effects by promoting or inhibiting differentiation in different tissues or cells.We propose that the concentration of NAM may influence proliferation,differentiation,and SIRT1 signaling of HSCs.AIM To evaluate the effects and underlying mechanisms of action of different concentrations of NAM on HSC proliferation and differentiation.METHODS CD34^(+)cells were purified from umbilical cord blood using MacsCD34 beads,and cultured for 10-12 d in a serum-free medium supplemented with cytokines,with different concentrations of NAM added according to experimental requirements.Flow cytometry was used to detect phenotype,cell cycle distribution,and apoptosis of the cultured cells.Real-time polymerase chain reaction was used to detect the transcription levels of target genes encoding stemness-related factors,che mokines,components of hypoxia pathways,and antioxidant enzymes.Dichloro-dihydro-fluorescein diacetate probes were used to evaluate intracellular production of reactive oxygen species(ROS).Determination of the effect of different culture conditions on the balance of cytokine by cytometric bead array.RESULTS Compared with the control group,the proportion and expansion folds of HSPCs(CD34^(+)CD38)incubated with 5 mmol/L or 10 mmol/L NAM were significantly increased(all P<0.05).The ST-HSCs ratio and fold expansion of the 5 mmol/L NAM group were significantly higher than those of the control and 10 mmol/L NAM groups(all P<0.001),whereas the LT-HSCs ratio and fold expansion of the 10 mmol/L NAM group were significantly higher than those of the other two groups(all P<0.05).When the NAM concentration was>10 mmol/L,cell viability significantly decreased.In addition,compared with the 5 mmol/L NAM group,the proportion of apoptotic cells in the 10 mmol/L NAM group increased and the proportion of cells in S and G2 phase decreased.Compared with the 5 mmol/L NAM group,the HSCs incubated with 10 mmol/L NAM exhibited significantly inhibited SIRT1 expression,increased intracellular ROS content,and downregulated expression of genes encoding antioxidant enzymes(superoxide dismutase 1,peroxiredoxin 1).CONCLUSION Low concentrations(5 mmol/L)of NAM can better regulate the balance between proliferation and differentiation,thereby promoting expansion of HSCs.These findings allow adjustment of NAM concentrations according to expansion needs.展开更多
BACKGROUND Efficient extraction of nucleic acids and proteins(ENAP)from cells is a prerequisite for precise annotation of gene function,and has become laboratory routine for revealing the mysteries of life.However,cel...BACKGROUND Efficient extraction of nucleic acids and proteins(ENAP)from cells is a prerequisite for precise annotation of gene function,and has become laboratory routine for revealing the mysteries of life.However,cell samples are often from different culture dishes,resulting in inevitable experimental errors and sometimes poor repeatability.AIM To explore a method to improve the efficiency of ENAP,minimizing errors in ENAP processes,enhancing the reliability and repeatability of subsequent experimental results.METHODS A protocol for the sequential isolation of RNA,DNA,and proteins from the same cultured HepG2 cells using RNAzol reagent is presented here.The first step involves culturing HepG2 cells to the exponential phase,followed by the sequential isolation of RNA,DNA,and proteins from the same cultured cells in the second step.The yield of nucleic acids and proteins is detected in the third step,and their purity and integrity are verified in the last step.RESULTS The procedure takes as few as 3-4 d from the start to quality verification and is highly efficient.In contrast to the existing kits and reagents,which are primarily based on independent isolation,this RNAzol reagent-based method is characterized by the sequential isolation of RNA,DNA,and proteins from the same cells,and therefore saves time,and has low cost and high efficiency.CONCLUSION The RNA,DNA,and proteins isolated using this method can be used for reverse transcription-polymerase chain reaction,polymerase chain reaction,and western blotting,respectively.展开更多
Background:The adhesion of monocytes to the endothelium following accumulation of low-density lipoprotein (LDL) in subendothelial spaces is an important step in the development of intimal hyperplasia in arterially imp...Background:The adhesion of monocytes to the endothelium following accumulation of low-density lipoprotein (LDL) in subendothelial spaces is an important step in the development of intimal hyperplasia in arterially implanted vein grafts and atherosclerosis in both animals and humans. However, it is not well known how serum factors affect the adhesion of monocytes. Methods: We have studied the effect of fetal calf serum (FCS), which we considered a source of LDL, on the adhesion of monocytes to endothelial cells (ECs) by using human monocytic THP-1 cells and both a monolayer of cultured bovine aortic endothelial cells (EC monoculture) and a co-culture with bovine aortic smooth muscle cells (EC-SMC co-culture). Results: It was found that the addition of FCS to the medium greatly affected the adhesion of THP-1 cells, and the higher the concentration of FCS in the medium, the greater the adhesion of THP-1 cells to endothelial cells. Adhesion of THP-1 cells to an EC-SMC co-culture was approximately twofold greater than that to an EC monoculture, and after adhering to endothelial cells, many THP-1 cells trans-migrated into the layer of smooth muscle cells. Conclusion: The results suggest that the elevation of the LDL (cholesterol) level in blood provides a favorable condition for the development of intimal hyperplasia and atherosclerosis by promoting the adhesion of monocytes to the endothelium and their subsequent migration into subendothelial spaces.展开更多
BACKGROUND There is no established treatment to impede the progression or restore kidney function in human chronic kidney disease(CKD).AIM To examine the efficacy of cultured human CD34+cells with enhanced proliferati...BACKGROUND There is no established treatment to impede the progression or restore kidney function in human chronic kidney disease(CKD).AIM To examine the efficacy of cultured human CD34+cells with enhanced proliferating potential in kidney injury in mice.METHODS Human umbilical cord blood(UCB)-derived CD34+cells were incubated for one week in vasculogenic conditioning medium.Vasculogenic culture significantly increased the number of CD34+cells and their ability to form endothelial progenitor cell colony-forming units.Adenineinduced tubulointerstitial injury of the kidney was induced in immunodeficient non-obese diabetic/severe combined immunodeficiency mice,and cultured human UCB-CD34+cells were administered at a dose of 1×106/mouse on days 7,14,and 21 after the start of adenine diet.RESULTS Repetitive administration of cultured UCB-CD34+cells significantly improved the time-course of kidney dysfunction in the cell therapy group compared with that in the control group.Both interstitial fibrosis and tubular damage were significantly reduced in the cell therapy group compared with those in the control group(P<0.01).Microvasculature integrity was significantly preserved(P<0.01)and macrophage infiltration into kidney tissue was dramatically decreased in the cell therapy group compared with those in the control group(P<0.001).CONCLUSION Early intervention using human cultured CD34+cells significantly improved the progression of tubulointerstitial kidney injury.Repetitive administration of cultured human UCB-CD34+cells significantly improved tubulointerstitial damage in adenine-induced kidney injury in mice via vasculoprotective and anti-inflammatory effects.展开更多
Objective To study gentamicin injury mechanisms using postnatal mouse cochlear spiral gangcells (SGC). Methods SGCs were isolated using a combinatorial approach of enzymatic digestion and mechanical separation from ...Objective To study gentamicin injury mechanisms using postnatal mouse cochlear spiral gangcells (SGC). Methods SGCs were isolated using a combinatorial approach of enzymatic digestion and mechanical separation from P2 - 6 Kunming mouse cochleae. After 4 days, cultured SGCs were fixed with 4% paraformaldehyde at room temperature for immunocytochemical examination using the methods of S-P and the monoclonal antibody against mouse neurofilament protein (Neurofilament-68/200Kda, NF-L+ H). SGCs were randomly divided into a blank control group and three gentamicin treatment groups (medium gentamicin concentration at 50 mg/L, 100 mg/L and 150 mg/L respectively), SGCs were collected and examined under a transmission electron microscope after being cultured for 48 h. Results SGC primary culture was successful. SGC cytoplasm and neurites were dyed brownish yellow by the monoelonal mouse neurofilament protein antibody. SGCs showed classical bipolar neuron appearance. Under the transmission electron microscope,.gentamicin treated SGCs showed morphological features different compared to those in the blank control group, which might indicate apoptosis. Conclusion Our results indicate that gentamicin has direct toxic effects on cochlear SGCs in mice and the injury mechanism is closely related with apoptosis. Damage to mitochor, dria may play an important role in the process.展开更多
BACKGROUND: Choosing proper donor cells is one of keys in experimental and clinical studies on cell replacement therapy (CRT) for treating Parkinson disease (PD). Embryonic mesencephalic precursor cells (MPCs) ...BACKGROUND: Choosing proper donor cells is one of keys in experimental and clinical studies on cell replacement therapy (CRT) for treating Parkinson disease (PD). Embryonic mesencephalic precursor cells (MPCs) can stably differentiate into dopaminergic neuron after in vitro proliferated culture. As compared with embryonic stem cell and neural stem cell strains, cell composition of embryonic MPCs after primary culture is also the most close to that of embryonic mesencephalic ventral cell suspension without proliferated culture. Successful experience accumulated in the latter suggests that primary cultured embryonic MPCs might be the most potential donor cells in clinical application with CRT for treating PD so far. OBJECTIVE: To investigate the feasibility of primary cultured embryonic precursor cells cultured primarily as donor cells in CRT for treating PD in rats. DESIGN : A randomized and controlled trial taking SD rats as experimental animals.SETTING: Department of Neurosurgery, Huashan Hospital Affiliated to Fudan University.MATERIALS: This experiment was carried out at the Institute of Neuroscience, Shanghai Institute for Biological Science, Chinese Academy of Sciences from July 2003 to June 2004. Totally 26 female SD rats, with body mass of 200 to 220 g, were provided by Shanghai Experimental Animal Center of Chinese Academy of Sciences. METHODS : Stereotaxic injection of 6-hydroxydopamine into the medial forebrain bundle were perfored to develop PD model rat. Among 26 SD rats, 20 rats achieved a more than 5 turns/min in apomorphine induced rotation test, reaching the standard of PD model rats. Immunohistochemical detection was performed on 1 out of 20 model rats after execution, and the other 19 rats were randomly divided into control group (n=5), sham transplantation group (n=5)and cell grafted group (n=9). Primary cultured E12 MPC cell suspension (1.2×10^11 L^-1)were used as donor cells. 4μL primary cultured E12 MPC cell suspension prepared freshly was injected into the lesioned corpus striatum of rats in cell grafted group, and 4μL D-Hank's solution was injected in sham transplantation group in the same way. There was no injection in control group. Apomorphine-induced rotation rate of PD rats were recorded respectively in cell grafted group and sham transplantation group pre-operation (initial value) and at postoperative 2, 4, 6 and 16 weeks. Apomorphine-induced rotation rate of PD rats was recorded in control group at postoperative 2 months (initial value) and following 2,4,6 and 16 weeks. To determine TH antigen with immunohistological ABC method (DAB developing) at 6 months post-transplantation to investigate the differentiation and survival of donor cells in the host body.MAIN OUTCOME MEASURES: Apomorphine-induced rotation behavior before and after transplantation and the survival and differentiation of implanted cells in the host body at 6 months post-transplantation. RESULTS: Among 19 model rats, one rat died after transplantation respectively in the cell grafted group and sham transplantation group; finally 17 model rats entered the stage of result analysis. Relative apomorphine-induced rotation rate was significantly decreased in the cell grafted group as compared with that before transplantation , with significant difference (P 〈 0.01 .P 〈 0.05);the mean value of relative apomorphine-induced rotation rate was significantly decreased at postoperative 16 weeks in cell grafted group as compared with that of corresponding relative rotation rate in control group , also with significant difference (P 〈 0.05).Immunohistological results showed that donor cells could differentiate into large and multi-polar dopaminergic neurons in the host body. CONCLUSION : Primary cultured embryonic MPCs can be used as the donor cells in CRT for treating PD.展开更多
Summary: In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epi...Summary: In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF.MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570 nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner. 50 U/mI. and 500 U/mI. NGF got more increase of proliferation than that of 5 U/mL NGF did. Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.展开更多
Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essent...Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essential to restore heart function.MSCs can be easily isolated from different sources,including bone marrow,adipose tissues,umbilical cord,and dental pulp.MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders.In this review,we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function.展开更多
In the present study, the effect of manganese(Mn) on antioxidant status and the expression of the manganese superoxide dismutase(MnSOD) gene in cultured primary myocardial cells collected from the chick embryos wa...In the present study, the effect of manganese(Mn) on antioxidant status and the expression of the manganese superoxide dismutase(MnSOD) gene in cultured primary myocardial cells collected from the chick embryos was investigated. The hypothesis that Mn supplementation would enhance the expression of MnSOD in cultured primary myocardial cells of chick embryos was tested. Eggs collected from Mn-depleted Arbor Acres laying breeder hens were incubated for 10 days and then myocardial cells were isolated and cultivated for 8 days. The embryonic myocardial cells on day 6 were treated with Mn in the cell culture medium at different time points when the proportion of cells showing spontaneous contraction was over 95% after the 3-day primary culture. A completely randomized design involving a 3 Mn levels(0, 0.5 and 1.0 mmol L^(-1))×3 incubation time points(12, 24 and 48 h) factorial arrangement of treatments(n=6) was used in the current experiment. The results showed that MnSOD activity and m RNA expression level were induced by Mn and increased with incubation time, which supported the hypothesis that Mn would enhance the expression of the MnSOD gene, and thus might protect myocardial cells from oxidative stress during the chick embryonic development.展开更多
To investigate the genotoxicity and reveal the potential toxicological mechanisms of Hexabromocyclododecane (HBCD), human breast cells HBL-100 were exposed to a sequence of HBCD concentrations (0, 5, 10, and 50 mg/...To investigate the genotoxicity and reveal the potential toxicological mechanisms of Hexabromocyclododecane (HBCD), human breast cells HBL-100 were exposed to a sequence of HBCD concentrations (0, 5, 10, and 50 mg/L) for 24 h. With a series of zymology and molecular biology methods, we found that HBCD induced dose-dependent oxidative stress on HBL-100 DNA. As revealed in q RT-PCR, activated prognostic factor ATM down-regulated tumor suppressor gene BRCA1 and prompted DNA repair genes h OGG1 and h MTH1 expression in lower concentrations of HBCD (〈 10 mg/L). However, DNA repair were inhibited as well as cell proliferation rate by higher concentrations of HBCD (50 mg/L). The results inferred that the genotoxicity of HBCD was dose-dependent and related to DNA repair pathway.展开更多
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t...Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.展开更多
The activity of alcohol dehydrogenase (ADH) in cultured cells of various tobacco was determined. It was found that significant differences existed in cells of different varieties cultured under normal conditions and a...The activity of alcohol dehydrogenase (ADH) in cultured cells of various tobacco was determined. It was found that significant differences existed in cells of different varieties cultured under normal conditions and as well after treated with exogenous ethanol. The ADH activity had positive relation with the ability of the cells to catabolize exogenous ethanol, indicating that the main function of the ADH in tobacco cells was in the direction of converting ethanol to acetaldehyde.展开更多
Objective: To explore the effect of L158, 809 (angiatensin Ⅱ receptorMockers, ARBs) and Cilazapril (Angiotensin converting enzyme inhibitor, ACEI) on the expression oftransforming growth factor-β_1 (TGF-β_1) and se...Objective: To explore the effect of L158, 809 (angiatensin Ⅱ receptorMockers, ARBs) and Cilazapril (Angiotensin converting enzyme inhibitor, ACEI) on the expression oftransforming growth factor-β_1 (TGF-β_1) and secretion of fibronectin, laminin and type Ⅳcollagen from the cultured human mesangial cells . Methods: Human mesangial cells were cultured indifferent glucose (5.6 mmol/L and 30 mmol/L) and agents (1, 10, 100 and 500 μmol/L) concentrations. The proliferation of mesangial cells were detected at 24, 48 and 72 h . Then the mesangial cellsare divided into four groups, low glucose (5.6 mmol/L) control group, high glucose (30 mmol/L)control group , L158, 809 (10 μmol/L) group and cilazapril (10 μmol/L) group. Forty- eight hourslater, the expression of TGF-β_1 were detected by RT-PCR. Concentrations of TGF-β_1 ,fibronection, laminin and type Ⅳ collagen in the su-pematants of the, mesangial cells weredetermined by EUSA and radioimmunoassay methods. Results: Compared with low glucose control group,the mesangial cells under high glucose medium show excessive proliferation and more TGF-β_1,fibronectin, laminin and type Ⅳ collagen in the supernatant. The expression of TGF-β_1 mRNA wasalso significantly increased under high glucose. The levels of TGF-β_1 and ECM (extracellularmatrix) proteins in the L158, 809 group and cilazapril group are obviously lower than that of thehigh glucose control group. The expression of TGF-β_1 mRNA was markedly decreased in the L158, 809group and cilazapril group compared with that of high glucose control group . Conclusion: Highglucose stimulated the cultured human mesangial cells to excessively proliferate, express TGF-β_1and secrete ECM proteins, and the high glucose-indeced changes were suppressed by either L158, 809and cilazapril.展开更多
Resveratrol is a dietary polyphenol espoused to have chemopreventive activity against a variety of human cancer types. We first reported that resveratrol significantly decreases the proliferation of both androgen-depe...Resveratrol is a dietary polyphenol espoused to have chemopreventive activity against a variety of human cancer types. We first reported that resveratrol significantly decreases the proliferation of both androgen-dependent and hormone-refractory prostate cancer cells. However, the effects of resveratrol in normal prostate epithelial and stromal cells, particularly with regard to its uptake, subcellular distribution and intracellular targets, have not been investigated. To advance the knowledge on accessibility and cellular disposition of resveratrol in prostate cells, [3H] resveratrol, fractionation of cell extracts into subcellular compartments, Western blot analysis, resveratrol affinity column chromatography and flow cytometry were used to study the uptake and intracellular distribution of resveratrol in normally cultured prostate stromal (PrSCs) and epithelial cells (PrECs). Pretreatment of both PrSCs and PrECs for 2 days with resveratrol modulated its uptake and selectively increased its distribution to the membrane and organelle compartments. Resveratrol affinity column chromatography studies showed differential expression of a previously identified resveratrol-targeting protein, quinone reductase 2 (QR2), in PrSCs and PrECs. Flow cytometric analysis comparing resveratrol-treated and untreated PrSCs showed a large decrease in G1-phase and a concomitant increase in S and G2/M-phases of the cell cycle. These results suggest that resveratrol suppresses PrSC proliferation by affecting cell cycle phase distribution, which may involve the participation by QR2.展开更多
AIM To study the inducible expression of hepatitis C virus ns3 gene (HCV ns3) in eukaryotic cells.METHODS The ns3 gene was obtained from plasmid pBns3 by polymerase chain reaction and inserted into the cloning vector ...AIM To study the inducible expression of hepatitis C virus ns3 gene (HCV ns3) in eukaryotic cells.METHODS The ns3 gene was obtained from plasmid pBns3 by polymerase chain reaction and inserted into the cloning vector pGEM-T. Then, the ns3 was subcloned into the vector pMSG to generate dexamethasone (DM)-inducible expression plasmid pMSG-ns3. CHO cells were transfected by pMSG-ns3 using calcium phosphate precipitation method and cultivated for 12 h-24 h. The transfected cells were induced with DM and the transient expression of NS3 protein was analyzed by ELISA and Western-blot methods.RESULTS After treated with 3×10-8mol/ L DM, the expression of NS3 was observed in the transfected CHO cells. A slightly higher level of NS3 was shown along with the time of DM treatment.CONCLUSION The inducible expressing vector pMSG-ns3 might be helpful for further studies of the characteristics of the ns3 gene in vivo.展开更多
Two isolation methods for sorting of endothelial progenitor cells(EPCs):from peripheral blood mononuclear cells(PBMCs)and CD133+ enriched cells were compared,by defining the cell morphology,phenotype,reproductive acti...Two isolation methods for sorting of endothelial progenitor cells(EPCs):from peripheral blood mononuclear cells(PBMCs)and CD133+ enriched cells were compared,by defining the cell morphology,phenotype,reproductive activities and function in vitro,to provide a reference for clinical application of EPCs.PBMCs from healthy subjects were used either directly for cell culture or for CD133+ sorting.The two groups of cells were cultured in complete medium 199(M199)for 7 to 14 days and the phenotypes of EPCs were an...展开更多
AIM To study the mechanism of Fuzhenghuayu (FZHY) decoction on anti liver fibrosis. METHODS FZHY 10% decoction sera was incubated with rat normal subcultured hepatic stellate cells (HSC) and fibrotic primarily cul...AIM To study the mechanism of Fuzhenghuayu (FZHY) decoction on anti liver fibrosis. METHODS FZHY 10% decoction sera was incubated with rat normal subcultured hepatic stellate cells (HSC) and fibrotic primarily cultured HSC, normal and fibrotic hepatocytes and subcultured skin fibroblasts separately. Cell intracellular and extracellular collagen synthesis rates were measured by the method of Proline impulse and collagenase digestion. RESULTS For primarily cultured HSC and hepatocytes, both of intracellular and extracellular collagen synthesis rates decreased in the drug sera group. For the normal subcultured HSC and primarily cultured hepatocytes, the extracellular collagen secretion was decreased obviously by the drug sera, and intracellular collagen synthesis rates were inhibited to some extents. For fibroblasts, both intracellular and extracellular collagen synthesis rates were inhibited some what, but no significant differences were found. CONCLUSION The mechanism of FZHY decoction on anti liver fibrosis may be associated with inhibition of liver collagen production.展开更多
Summary: In order to study the effects of electromagnetic fields (EMFs) on proliferation, differentiation and intercellular cyclic AMP (cAMP) in mouse bone marrow mesenchymal stem cells (MSCs) in vitro, the mouse bone...Summary: In order to study the effects of electromagnetic fields (EMFs) on proliferation, differentiation and intercellular cyclic AMP (cAMP) in mouse bone marrow mesenchymal stem cells (MSCs) in vitro, the mouse bone MSCs were isolated and cultured in vitro. The third passage MSCs were divided into 4 groups and stimulated with EMFs. The cellular proliferation (MTT), the cellular differentiation (alkaline phosphatase activity, ALP), and the intercellular cAMP level were investigated at different time points. The results showed that EMF (50Hz pulse burst 2 mT peak) inhibited the cellular proliferation (P<0.05), enhanced the cellular differentiation (P<0.05), and increased the intercellular cAMP level (P<0.01) in the early time of the stimulation (1-3 days), but the intercellular cAMP level did not increased further in the later days. We are led to conclude that the cAMP may be involved in the mediation of the growth inhibitory and differentiation-inducing signals of specific EMFs in vitro.展开更多
Aim: To examine the possible effect of heat treatment on expression of heat shock proteins (Hsps) 105, 70, and 60 in primary monkey Sertoli cells and to evaluate the possible signal pathways. Methods: Western blot...Aim: To examine the possible effect of heat treatment on expression of heat shock proteins (Hsps) 105, 70, and 60 in primary monkey Sertoli cells and to evaluate the possible signal pathways. Methods: Western blot analysis, realtime polymerase chain reaction (PCR), and confocal immunohistochemistry were used to analyze mRNA and protein levels of the Hsps in response to 43~C treatment of Sertoli cells isolated from pubertal monkey testes. Results: Staining with Hoechst 33342 indicated Sertoli cells did not undergo apoptosis after heat treatment. Hspl05 was expressed in cytoplasm of untreated Sertoli cells. Both Hspl05 mRNA and protein levels were increased approximately 20-fold compared to those of the untreated controls at 12 h after heat treatment. Untreated Sertoli cells did not express Hsp70, but heat stress induced its expression in the cell cytoplasm. The time-course of changes in Hsp70 was similar to that of Hsp105. In contrast to Hsp105 and Hsp70, the change in Hsp60 expression was much less obvious. The protein level between 12 h and 48 h after heat treatment was only approximately 1.5-fold that of the untreated control. Extracellular regulated kinase (ERK) 1/2 inhibitor (U0126) or phosphoinositide kinase-3 (PI3K) inhibitor (LY294002) could partially block the response of Hspl05 and Hsp70 induced by heat treatment. Conclusion: These results indicate that the heat-induced expression of the three types of Hsp in monkey Sertoli cells might be regulated by ERK and/or PI3K signal pathways, but the profile of their expression is different, suggesting that they might have different regulatory functions in Sertoli cells.展开更多
基金the Science and Technology Department of Shanxi Province,No.YDZJSX2021B009Health Commission of Shanxi Province,No.2021XM07Shanxi Provincial Department of Education,No.2023KY380.
文摘BACKGROUND In vitro expansion to increase numbers of hematopoietic stem cells(HSCs)in cord blood could improve clinical efficacy of this vital resource.Nicotinamide(NAM)can promote HSC expansion ex vivo,but its effect on hematopoietic stem and progenitor cells(HSPCs,CD34^(+)CD38)and functional subtypes of HSCs-shortterm repopulating HSCs(ST-HSCs,CD34^(+)CD38CD45RACD49f^(+))and long-term repopulating HSCs(LT-HSCs,CD34^(+)CD38CD45RACD49f^(+)CD90^(+))is not yet known.As a sirtuin 1(SIRT1)inhibitor,NAM participates in regulating cell adhesion,polarity,migration,proliferation,and differentiation.However,SIRT1 exhibits dual effects by promoting or inhibiting differentiation in different tissues or cells.We propose that the concentration of NAM may influence proliferation,differentiation,and SIRT1 signaling of HSCs.AIM To evaluate the effects and underlying mechanisms of action of different concentrations of NAM on HSC proliferation and differentiation.METHODS CD34^(+)cells were purified from umbilical cord blood using MacsCD34 beads,and cultured for 10-12 d in a serum-free medium supplemented with cytokines,with different concentrations of NAM added according to experimental requirements.Flow cytometry was used to detect phenotype,cell cycle distribution,and apoptosis of the cultured cells.Real-time polymerase chain reaction was used to detect the transcription levels of target genes encoding stemness-related factors,che mokines,components of hypoxia pathways,and antioxidant enzymes.Dichloro-dihydro-fluorescein diacetate probes were used to evaluate intracellular production of reactive oxygen species(ROS).Determination of the effect of different culture conditions on the balance of cytokine by cytometric bead array.RESULTS Compared with the control group,the proportion and expansion folds of HSPCs(CD34^(+)CD38)incubated with 5 mmol/L or 10 mmol/L NAM were significantly increased(all P<0.05).The ST-HSCs ratio and fold expansion of the 5 mmol/L NAM group were significantly higher than those of the control and 10 mmol/L NAM groups(all P<0.001),whereas the LT-HSCs ratio and fold expansion of the 10 mmol/L NAM group were significantly higher than those of the other two groups(all P<0.05).When the NAM concentration was>10 mmol/L,cell viability significantly decreased.In addition,compared with the 5 mmol/L NAM group,the proportion of apoptotic cells in the 10 mmol/L NAM group increased and the proportion of cells in S and G2 phase decreased.Compared with the 5 mmol/L NAM group,the HSCs incubated with 10 mmol/L NAM exhibited significantly inhibited SIRT1 expression,increased intracellular ROS content,and downregulated expression of genes encoding antioxidant enzymes(superoxide dismutase 1,peroxiredoxin 1).CONCLUSION Low concentrations(5 mmol/L)of NAM can better regulate the balance between proliferation and differentiation,thereby promoting expansion of HSCs.These findings allow adjustment of NAM concentrations according to expansion needs.
基金Supported by the Postdoctoral Science Foundation of China,No.2005038300and the National Natural Science Foundation of China,No.30671028.
文摘BACKGROUND Efficient extraction of nucleic acids and proteins(ENAP)from cells is a prerequisite for precise annotation of gene function,and has become laboratory routine for revealing the mysteries of life.However,cell samples are often from different culture dishes,resulting in inevitable experimental errors and sometimes poor repeatability.AIM To explore a method to improve the efficiency of ENAP,minimizing errors in ENAP processes,enhancing the reliability and repeatability of subsequent experimental results.METHODS A protocol for the sequential isolation of RNA,DNA,and proteins from the same cultured HepG2 cells using RNAzol reagent is presented here.The first step involves culturing HepG2 cells to the exponential phase,followed by the sequential isolation of RNA,DNA,and proteins from the same cultured cells in the second step.The yield of nucleic acids and proteins is detected in the third step,and their purity and integrity are verified in the last step.RESULTS The procedure takes as few as 3-4 d from the start to quality verification and is highly efficient.In contrast to the existing kits and reagents,which are primarily based on independent isolation,this RNAzol reagent-based method is characterized by the sequential isolation of RNA,DNA,and proteins from the same cells,and therefore saves time,and has low cost and high efficiency.CONCLUSION The RNA,DNA,and proteins isolated using this method can be used for reverse transcription-polymerase chain reaction,polymerase chain reaction,and western blotting,respectively.
基金a Grant-in-Aid for Scientific Research onPriority Areas (No. 15086201) from the Ministry of Education, Culture, Sports, Science and Technology of Japanthe Health Bureauof Zhejiang Province (No. 2007B132), China
文摘Background:The adhesion of monocytes to the endothelium following accumulation of low-density lipoprotein (LDL) in subendothelial spaces is an important step in the development of intimal hyperplasia in arterially implanted vein grafts and atherosclerosis in both animals and humans. However, it is not well known how serum factors affect the adhesion of monocytes. Methods: We have studied the effect of fetal calf serum (FCS), which we considered a source of LDL, on the adhesion of monocytes to endothelial cells (ECs) by using human monocytic THP-1 cells and both a monolayer of cultured bovine aortic endothelial cells (EC monoculture) and a co-culture with bovine aortic smooth muscle cells (EC-SMC co-culture). Results: It was found that the addition of FCS to the medium greatly affected the adhesion of THP-1 cells, and the higher the concentration of FCS in the medium, the greater the adhesion of THP-1 cells to endothelial cells. Adhesion of THP-1 cells to an EC-SMC co-culture was approximately twofold greater than that to an EC monoculture, and after adhering to endothelial cells, many THP-1 cells trans-migrated into the layer of smooth muscle cells. Conclusion: The results suggest that the elevation of the LDL (cholesterol) level in blood provides a favorable condition for the development of intimal hyperplasia and atherosclerosis by promoting the adhesion of monocytes to the endothelium and their subsequent migration into subendothelial spaces.
文摘BACKGROUND There is no established treatment to impede the progression or restore kidney function in human chronic kidney disease(CKD).AIM To examine the efficacy of cultured human CD34+cells with enhanced proliferating potential in kidney injury in mice.METHODS Human umbilical cord blood(UCB)-derived CD34+cells were incubated for one week in vasculogenic conditioning medium.Vasculogenic culture significantly increased the number of CD34+cells and their ability to form endothelial progenitor cell colony-forming units.Adenineinduced tubulointerstitial injury of the kidney was induced in immunodeficient non-obese diabetic/severe combined immunodeficiency mice,and cultured human UCB-CD34+cells were administered at a dose of 1×106/mouse on days 7,14,and 21 after the start of adenine diet.RESULTS Repetitive administration of cultured UCB-CD34+cells significantly improved the time-course of kidney dysfunction in the cell therapy group compared with that in the control group.Both interstitial fibrosis and tubular damage were significantly reduced in the cell therapy group compared with those in the control group(P<0.01).Microvasculature integrity was significantly preserved(P<0.01)and macrophage infiltration into kidney tissue was dramatically decreased in the cell therapy group compared with those in the control group(P<0.001).CONCLUSION Early intervention using human cultured CD34+cells significantly improved the progression of tubulointerstitial kidney injury.Repetitive administration of cultured human UCB-CD34+cells significantly improved tubulointerstitial damage in adenine-induced kidney injury in mice via vasculoprotective and anti-inflammatory effects.
文摘Objective To study gentamicin injury mechanisms using postnatal mouse cochlear spiral gangcells (SGC). Methods SGCs were isolated using a combinatorial approach of enzymatic digestion and mechanical separation from P2 - 6 Kunming mouse cochleae. After 4 days, cultured SGCs were fixed with 4% paraformaldehyde at room temperature for immunocytochemical examination using the methods of S-P and the monoclonal antibody against mouse neurofilament protein (Neurofilament-68/200Kda, NF-L+ H). SGCs were randomly divided into a blank control group and three gentamicin treatment groups (medium gentamicin concentration at 50 mg/L, 100 mg/L and 150 mg/L respectively), SGCs were collected and examined under a transmission electron microscope after being cultured for 48 h. Results SGC primary culture was successful. SGC cytoplasm and neurites were dyed brownish yellow by the monoelonal mouse neurofilament protein antibody. SGCs showed classical bipolar neuron appearance. Under the transmission electron microscope,.gentamicin treated SGCs showed morphological features different compared to those in the blank control group, which might indicate apoptosis. Conclusion Our results indicate that gentamicin has direct toxic effects on cochlear SGCs in mice and the injury mechanism is closely related with apoptosis. Damage to mitochor, dria may play an important role in the process.
文摘BACKGROUND: Choosing proper donor cells is one of keys in experimental and clinical studies on cell replacement therapy (CRT) for treating Parkinson disease (PD). Embryonic mesencephalic precursor cells (MPCs) can stably differentiate into dopaminergic neuron after in vitro proliferated culture. As compared with embryonic stem cell and neural stem cell strains, cell composition of embryonic MPCs after primary culture is also the most close to that of embryonic mesencephalic ventral cell suspension without proliferated culture. Successful experience accumulated in the latter suggests that primary cultured embryonic MPCs might be the most potential donor cells in clinical application with CRT for treating PD so far. OBJECTIVE: To investigate the feasibility of primary cultured embryonic precursor cells cultured primarily as donor cells in CRT for treating PD in rats. DESIGN : A randomized and controlled trial taking SD rats as experimental animals.SETTING: Department of Neurosurgery, Huashan Hospital Affiliated to Fudan University.MATERIALS: This experiment was carried out at the Institute of Neuroscience, Shanghai Institute for Biological Science, Chinese Academy of Sciences from July 2003 to June 2004. Totally 26 female SD rats, with body mass of 200 to 220 g, were provided by Shanghai Experimental Animal Center of Chinese Academy of Sciences. METHODS : Stereotaxic injection of 6-hydroxydopamine into the medial forebrain bundle were perfored to develop PD model rat. Among 26 SD rats, 20 rats achieved a more than 5 turns/min in apomorphine induced rotation test, reaching the standard of PD model rats. Immunohistochemical detection was performed on 1 out of 20 model rats after execution, and the other 19 rats were randomly divided into control group (n=5), sham transplantation group (n=5)and cell grafted group (n=9). Primary cultured E12 MPC cell suspension (1.2×10^11 L^-1)were used as donor cells. 4μL primary cultured E12 MPC cell suspension prepared freshly was injected into the lesioned corpus striatum of rats in cell grafted group, and 4μL D-Hank's solution was injected in sham transplantation group in the same way. There was no injection in control group. Apomorphine-induced rotation rate of PD rats were recorded respectively in cell grafted group and sham transplantation group pre-operation (initial value) and at postoperative 2, 4, 6 and 16 weeks. Apomorphine-induced rotation rate of PD rats was recorded in control group at postoperative 2 months (initial value) and following 2,4,6 and 16 weeks. To determine TH antigen with immunohistological ABC method (DAB developing) at 6 months post-transplantation to investigate the differentiation and survival of donor cells in the host body.MAIN OUTCOME MEASURES: Apomorphine-induced rotation behavior before and after transplantation and the survival and differentiation of implanted cells in the host body at 6 months post-transplantation. RESULTS: Among 19 model rats, one rat died after transplantation respectively in the cell grafted group and sham transplantation group; finally 17 model rats entered the stage of result analysis. Relative apomorphine-induced rotation rate was significantly decreased in the cell grafted group as compared with that before transplantation , with significant difference (P 〈 0.01 .P 〈 0.05);the mean value of relative apomorphine-induced rotation rate was significantly decreased at postoperative 16 weeks in cell grafted group as compared with that of corresponding relative rotation rate in control group , also with significant difference (P 〈 0.05).Immunohistological results showed that donor cells could differentiate into large and multi-polar dopaminergic neurons in the host body. CONCLUSION : Primary cultured embryonic MPCs can be used as the donor cells in CRT for treating PD.
文摘Summary: In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF.MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570 nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner. 50 U/mI. and 500 U/mI. NGF got more increase of proliferation than that of 5 U/mL NGF did. Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.
文摘Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essential to restore heart function.MSCs can be easily isolated from different sources,including bone marrow,adipose tissues,umbilical cord,and dental pulp.MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders.In this review,we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function.
基金supported by the Key International Cooperation Program of the National Natural Science Foundation of China (31110103916)the National Natural Science Foundation of China (31272465)+1 种基金the Agricultural Science and Technology Innovation Program,China (ASTIP-IAS08)the China Agriculture Research System (CARS-42)
文摘In the present study, the effect of manganese(Mn) on antioxidant status and the expression of the manganese superoxide dismutase(MnSOD) gene in cultured primary myocardial cells collected from the chick embryos was investigated. The hypothesis that Mn supplementation would enhance the expression of MnSOD in cultured primary myocardial cells of chick embryos was tested. Eggs collected from Mn-depleted Arbor Acres laying breeder hens were incubated for 10 days and then myocardial cells were isolated and cultivated for 8 days. The embryonic myocardial cells on day 6 were treated with Mn in the cell culture medium at different time points when the proportion of cells showing spontaneous contraction was over 95% after the 3-day primary culture. A completely randomized design involving a 3 Mn levels(0, 0.5 and 1.0 mmol L^(-1))×3 incubation time points(12, 24 and 48 h) factorial arrangement of treatments(n=6) was used in the current experiment. The results showed that MnSOD activity and m RNA expression level were induced by Mn and increased with incubation time, which supported the hypothesis that Mn would enhance the expression of the MnSOD gene, and thus might protect myocardial cells from oxidative stress during the chick embryonic development.
基金supported by the National Natural Science Foundation of China(No.41406088)The open fund of Key Laboratory for Ecological Environment in Coastal Areas,State Oceanic Administration(201506)
文摘To investigate the genotoxicity and reveal the potential toxicological mechanisms of Hexabromocyclododecane (HBCD), human breast cells HBL-100 were exposed to a sequence of HBCD concentrations (0, 5, 10, and 50 mg/L) for 24 h. With a series of zymology and molecular biology methods, we found that HBCD induced dose-dependent oxidative stress on HBL-100 DNA. As revealed in q RT-PCR, activated prognostic factor ATM down-regulated tumor suppressor gene BRCA1 and prompted DNA repair genes h OGG1 and h MTH1 expression in lower concentrations of HBCD (〈 10 mg/L). However, DNA repair were inhibited as well as cell proliferation rate by higher concentrations of HBCD (50 mg/L). The results inferred that the genotoxicity of HBCD was dose-dependent and related to DNA repair pathway.
基金supported by the National Natural Science Foundation of China,No.82171380(to CD)Jiangsu Students’Platform for Innovation and Entrepreneurship Training Program,No.202110304098Y(to DJ)。
文摘Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
文摘The activity of alcohol dehydrogenase (ADH) in cultured cells of various tobacco was determined. It was found that significant differences existed in cells of different varieties cultured under normal conditions and as well after treated with exogenous ethanol. The ADH activity had positive relation with the ability of the cells to catabolize exogenous ethanol, indicating that the main function of the ADH in tobacco cells was in the direction of converting ethanol to acetaldehyde.
基金National Science and Technology Ninth 5-year Project of Medicine(96-906-05-0)
文摘Objective: To explore the effect of L158, 809 (angiatensin Ⅱ receptorMockers, ARBs) and Cilazapril (Angiotensin converting enzyme inhibitor, ACEI) on the expression oftransforming growth factor-β_1 (TGF-β_1) and secretion of fibronectin, laminin and type Ⅳcollagen from the cultured human mesangial cells . Methods: Human mesangial cells were cultured indifferent glucose (5.6 mmol/L and 30 mmol/L) and agents (1, 10, 100 and 500 μmol/L) concentrations. The proliferation of mesangial cells were detected at 24, 48 and 72 h . Then the mesangial cellsare divided into four groups, low glucose (5.6 mmol/L) control group, high glucose (30 mmol/L)control group , L158, 809 (10 μmol/L) group and cilazapril (10 μmol/L) group. Forty- eight hourslater, the expression of TGF-β_1 were detected by RT-PCR. Concentrations of TGF-β_1 ,fibronection, laminin and type Ⅳ collagen in the su-pematants of the, mesangial cells weredetermined by EUSA and radioimmunoassay methods. Results: Compared with low glucose control group,the mesangial cells under high glucose medium show excessive proliferation and more TGF-β_1,fibronectin, laminin and type Ⅳ collagen in the supernatant. The expression of TGF-β_1 mRNA wasalso significantly increased under high glucose. The levels of TGF-β_1 and ECM (extracellularmatrix) proteins in the L158, 809 group and cilazapril group are obviously lower than that of thehigh glucose control group. The expression of TGF-β_1 mRNA was markedly decreased in the L158, 809group and cilazapril group compared with that of high glucose control group . Conclusion: Highglucose stimulated the cultured human mesangial cells to excessively proliferate, express TGF-β_1and secrete ECM proteins, and the high glucose-indeced changes were suppressed by either L158, 809and cilazapril.
文摘Resveratrol is a dietary polyphenol espoused to have chemopreventive activity against a variety of human cancer types. We first reported that resveratrol significantly decreases the proliferation of both androgen-dependent and hormone-refractory prostate cancer cells. However, the effects of resveratrol in normal prostate epithelial and stromal cells, particularly with regard to its uptake, subcellular distribution and intracellular targets, have not been investigated. To advance the knowledge on accessibility and cellular disposition of resveratrol in prostate cells, [3H] resveratrol, fractionation of cell extracts into subcellular compartments, Western blot analysis, resveratrol affinity column chromatography and flow cytometry were used to study the uptake and intracellular distribution of resveratrol in normally cultured prostate stromal (PrSCs) and epithelial cells (PrECs). Pretreatment of both PrSCs and PrECs for 2 days with resveratrol modulated its uptake and selectively increased its distribution to the membrane and organelle compartments. Resveratrol affinity column chromatography studies showed differential expression of a previously identified resveratrol-targeting protein, quinone reductase 2 (QR2), in PrSCs and PrECs. Flow cytometric analysis comparing resveratrol-treated and untreated PrSCs showed a large decrease in G1-phase and a concomitant increase in S and G2/M-phases of the cell cycle. These results suggest that resveratrol suppresses PrSC proliferation by affecting cell cycle phase distribution, which may involve the participation by QR2.
基金Projects upported by the National Natural Science Foundation of China,No.39470290
文摘AIM To study the inducible expression of hepatitis C virus ns3 gene (HCV ns3) in eukaryotic cells.METHODS The ns3 gene was obtained from plasmid pBns3 by polymerase chain reaction and inserted into the cloning vector pGEM-T. Then, the ns3 was subcloned into the vector pMSG to generate dexamethasone (DM)-inducible expression plasmid pMSG-ns3. CHO cells were transfected by pMSG-ns3 using calcium phosphate precipitation method and cultivated for 12 h-24 h. The transfected cells were induced with DM and the transient expression of NS3 protein was analyzed by ELISA and Western-blot methods.RESULTS After treated with 3×10-8mol/ L DM, the expression of NS3 was observed in the transfected CHO cells. A slightly higher level of NS3 was shown along with the time of DM treatment.CONCLUSION The inducible expressing vector pMSG-ns3 might be helpful for further studies of the characteristics of the ns3 gene in vivo.
文摘Two isolation methods for sorting of endothelial progenitor cells(EPCs):from peripheral blood mononuclear cells(PBMCs)and CD133+ enriched cells were compared,by defining the cell morphology,phenotype,reproductive activities and function in vitro,to provide a reference for clinical application of EPCs.PBMCs from healthy subjects were used either directly for cell culture or for CD133+ sorting.The two groups of cells were cultured in complete medium 199(M199)for 7 to 14 days and the phenotypes of EPCs were an...
文摘AIM To study the mechanism of Fuzhenghuayu (FZHY) decoction on anti liver fibrosis. METHODS FZHY 10% decoction sera was incubated with rat normal subcultured hepatic stellate cells (HSC) and fibrotic primarily cultured HSC, normal and fibrotic hepatocytes and subcultured skin fibroblasts separately. Cell intracellular and extracellular collagen synthesis rates were measured by the method of Proline impulse and collagenase digestion. RESULTS For primarily cultured HSC and hepatocytes, both of intracellular and extracellular collagen synthesis rates decreased in the drug sera group. For the normal subcultured HSC and primarily cultured hepatocytes, the extracellular collagen secretion was decreased obviously by the drug sera, and intracellular collagen synthesis rates were inhibited to some extents. For fibroblasts, both intracellular and extracellular collagen synthesis rates were inhibited some what, but no significant differences were found. CONCLUSION The mechanism of FZHY decoction on anti liver fibrosis may be associated with inhibition of liver collagen production.
基金This project was supported by a grant from the National Natural Sciences Foundation of China (No. 50347025).
文摘Summary: In order to study the effects of electromagnetic fields (EMFs) on proliferation, differentiation and intercellular cyclic AMP (cAMP) in mouse bone marrow mesenchymal stem cells (MSCs) in vitro, the mouse bone MSCs were isolated and cultured in vitro. The third passage MSCs were divided into 4 groups and stimulated with EMFs. The cellular proliferation (MTT), the cellular differentiation (alkaline phosphatase activity, ALP), and the intercellular cAMP level were investigated at different time points. The results showed that EMF (50Hz pulse burst 2 mT peak) inhibited the cellular proliferation (P<0.05), enhanced the cellular differentiation (P<0.05), and increased the intercellular cAMP level (P<0.01) in the early time of the stimulation (1-3 days), but the intercellular cAMP level did not increased further in the later days. We are led to conclude that the cAMP may be involved in the mediation of the growth inhibitory and differentiation-inducing signals of specific EMFs in vitro.
基金Acknowledgment This study was supported by the "973" project (No. 2006CB504001), the Major Research Plan (No. 2006CB944001), the CAS Innovation Project (KSCA2- YW-R-55), the National Natural Science Foundation of China (No. 3061800530230190 30600311), and the Beijing Natural Science Foundation (No. 5073032).
文摘Aim: To examine the possible effect of heat treatment on expression of heat shock proteins (Hsps) 105, 70, and 60 in primary monkey Sertoli cells and to evaluate the possible signal pathways. Methods: Western blot analysis, realtime polymerase chain reaction (PCR), and confocal immunohistochemistry were used to analyze mRNA and protein levels of the Hsps in response to 43~C treatment of Sertoli cells isolated from pubertal monkey testes. Results: Staining with Hoechst 33342 indicated Sertoli cells did not undergo apoptosis after heat treatment. Hspl05 was expressed in cytoplasm of untreated Sertoli cells. Both Hspl05 mRNA and protein levels were increased approximately 20-fold compared to those of the untreated controls at 12 h after heat treatment. Untreated Sertoli cells did not express Hsp70, but heat stress induced its expression in the cell cytoplasm. The time-course of changes in Hsp70 was similar to that of Hsp105. In contrast to Hsp105 and Hsp70, the change in Hsp60 expression was much less obvious. The protein level between 12 h and 48 h after heat treatment was only approximately 1.5-fold that of the untreated control. Extracellular regulated kinase (ERK) 1/2 inhibitor (U0126) or phosphoinositide kinase-3 (PI3K) inhibitor (LY294002) could partially block the response of Hspl05 and Hsp70 induced by heat treatment. Conclusion: These results indicate that the heat-induced expression of the three types of Hsp in monkey Sertoli cells might be regulated by ERK and/or PI3K signal pathways, but the profile of their expression is different, suggesting that they might have different regulatory functions in Sertoli cells.