On the basis of energy and continuity equations a general threshold condition for chocking in open channels is obtained and a representation in terms of the Froude number at the upstream section and other parameters i...On the basis of energy and continuity equations a general threshold condition for chocking in open channels is obtained and a representation in terms of the Froude number at the upstream section and other parameters is given to predict whether the chocking phenomenon occurs or not at the downstream section. From the general threshold condition for chocking the limit contraction ratios of the channel width are introduced for both with and without the energy losses and a criterion for excavation of the tailrace to avoid chocking is derived. An example shows that using these criterion and the representation proposed for calculating flow depth it is very easy to determine the scheme of the excavation of the open channels.展开更多
The selection of optimum chock (support) capacity is very crucial for a successful longwall mining. The selection of chock capacity depends on the site-specific geotechnical parameters, constraints and longwall panel ...The selection of optimum chock (support) capacity is very crucial for a successful longwall mining. The selection of chock capacity depends on the site-specific geotechnical parameters, constraints and longwall panel geometry, which are generally not known in detail in priority. Hence, based on the field and laboratory data, various possible combinations should be analyzed to cater for the unforeseeable mining conditions. This paper discusses the use of numerical model for selecting an appropriate chock capacity based on the site-specific geological and geotechnical information and longwall panel geometry. The fracture mechanisms of immediate and main roofs are also discussed for various panel widths and support capacities. For the models considered, the chock convergence is predicted to increase by about 33% due to the increase in face width from 100 to 260 m. Similarly, the massive roof strata are found to yield higher chock convergence compared to bedded strata.展开更多
Various numerical methods are available to model,simulate,analyse and interpret the results;however a major task is to select a reliable and intended tool to perform a realistic assessment of any problem.For a model t...Various numerical methods are available to model,simulate,analyse and interpret the results;however a major task is to select a reliable and intended tool to perform a realistic assessment of any problem.For a model to be a representative of the realistic mining scenario,a verified tool must be chosen to perform an assessment of mine roof support requirement and address the geotechnical risks associated with longwall mining.The dependable tools provide a safe working environment,increased production,efficient management of resources and reduce environmental impacts of mining.Although various methods,for example,analytical,experimental and empirical are being adopted in mining,in recent days numerical tools are becoming popular due to the advancement in computer hardware and numerical methods.Empirical rules based on past experiences do provide a general guide,however due to the heterogeneous nature of mine geology(i.e.,none of the mine sites are identical),numerical simulations of mine site specific conditions would lend better insights into some underlying issues.The paper highlights the use of a continuum mechanics based tool in coal mining with a mine scale model.The continuum modelling can provide close to accurate stress fields and deformation.The paper describes the use of existing mine data to calibrate and validate the model parameters,which then are used to assess geotechnical issues related with installing a new high capacity longwall mine at the mine site.A variety of parameters,for example,chock convergences,caveability of overlying sandstones,abutment and vertical stresses have been estimated.展开更多
The thermal choking phenomenon is of great importance in an inlet isolator in dual-mode ram jet/scramjet combustor. In some cases the choked flow creates a pseudo-shock wave including a shock train in it at the engine...The thermal choking phenomenon is of great importance in an inlet isolator in dual-mode ram jet/scramjet combustor. In some cases the choked flow creates a pseudo-shock wave including a shock train in it at the engine inlet and causes large amounts of drag and radically reduces the performance of the engine at high flight Mach numbers. The present paper describes a one-dimensional flow model taking account of the upstream boundary-layer as well as heat addition by using a mass-weighted av- eraging technique. The simple relationships for the flow field in a constant area duct in which the effect of the upstream boundary-layer is considered but the effect of the wall friction in the duct can be neglected are presented. The results of the calculation such as the maximum heat addition when the thermal choking occurs, the downstream Mach number and the static pressure ratio are presented and examined in detail.展开更多
The jacking pinions and rack chocks of the fixation system of a jack-up sustain tremendous load in the elevated condition, especially when there exists a remarkable non-uniformity of the load distribution. Failures of...The jacking pinions and rack chocks of the fixation system of a jack-up sustain tremendous load in the elevated condition, especially when there exists a remarkable non-uniformity of the load distribution. Failures of these structural components may lead to disastrous consequence of the jack-up. Despite the importance of these components, it is difficult to give an accurate prediction of the load distribution on these components in engineering application due to the complex nonlinear interaction mechanism, which is influenced by the relative stiffness of the components, leg-guide clearance and backlash. Previous studies mainly focus on the global performance of the jack-up and pay little attention to the load distribution on the pinions and chocks. The strength of the jacking system is often guaranteed by the manufacturer for an estimate load level, which brings in uncertainty to the safety of the jack-up. The characteristics of the hull-leg interaction are discussed in this paper, and a simplified method using gap elements is proposed. The nonlinear structural analyses are carried out for a specific jack-up using the proposed method and the three-dimensional finite element method(FEM) with contact algorithm. The proposed method is proved accurate and effective for the engineering application. The characteristics of the load distribution of the specific jack-up are discussed, and the conclusions are presented.展开更多
文摘On the basis of energy and continuity equations a general threshold condition for chocking in open channels is obtained and a representation in terms of the Froude number at the upstream section and other parameters is given to predict whether the chocking phenomenon occurs or not at the downstream section. From the general threshold condition for chocking the limit contraction ratios of the channel width are introduced for both with and without the energy losses and a criterion for excavation of the tailrace to avoid chocking is derived. An example shows that using these criterion and the representation proposed for calculating flow depth it is very easy to determine the scheme of the excavation of the open channels.
文摘The selection of optimum chock (support) capacity is very crucial for a successful longwall mining. The selection of chock capacity depends on the site-specific geotechnical parameters, constraints and longwall panel geometry, which are generally not known in detail in priority. Hence, based on the field and laboratory data, various possible combinations should be analyzed to cater for the unforeseeable mining conditions. This paper discusses the use of numerical model for selecting an appropriate chock capacity based on the site-specific geological and geotechnical information and longwall panel geometry. The fracture mechanisms of immediate and main roofs are also discussed for various panel widths and support capacities. For the models considered, the chock convergence is predicted to increase by about 33% due to the increase in face width from 100 to 260 m. Similarly, the massive roof strata are found to yield higher chock convergence compared to bedded strata.
基金the Asia Pacific Partnership and the Singareni Collieries Company Ltd
文摘Various numerical methods are available to model,simulate,analyse and interpret the results;however a major task is to select a reliable and intended tool to perform a realistic assessment of any problem.For a model to be a representative of the realistic mining scenario,a verified tool must be chosen to perform an assessment of mine roof support requirement and address the geotechnical risks associated with longwall mining.The dependable tools provide a safe working environment,increased production,efficient management of resources and reduce environmental impacts of mining.Although various methods,for example,analytical,experimental and empirical are being adopted in mining,in recent days numerical tools are becoming popular due to the advancement in computer hardware and numerical methods.Empirical rules based on past experiences do provide a general guide,however due to the heterogeneous nature of mine geology(i.e.,none of the mine sites are identical),numerical simulations of mine site specific conditions would lend better insights into some underlying issues.The paper highlights the use of a continuum mechanics based tool in coal mining with a mine scale model.The continuum modelling can provide close to accurate stress fields and deformation.The paper describes the use of existing mine data to calibrate and validate the model parameters,which then are used to assess geotechnical issues related with installing a new high capacity longwall mine at the mine site.A variety of parameters,for example,chock convergences,caveability of overlying sandstones,abutment and vertical stresses have been estimated.
文摘The thermal choking phenomenon is of great importance in an inlet isolator in dual-mode ram jet/scramjet combustor. In some cases the choked flow creates a pseudo-shock wave including a shock train in it at the engine inlet and causes large amounts of drag and radically reduces the performance of the engine at high flight Mach numbers. The present paper describes a one-dimensional flow model taking account of the upstream boundary-layer as well as heat addition by using a mass-weighted av- eraging technique. The simple relationships for the flow field in a constant area duct in which the effect of the upstream boundary-layer is considered but the effect of the wall friction in the duct can be neglected are presented. The results of the calculation such as the maximum heat addition when the thermal choking occurs, the downstream Mach number and the static pressure ratio are presented and examined in detail.
文摘The jacking pinions and rack chocks of the fixation system of a jack-up sustain tremendous load in the elevated condition, especially when there exists a remarkable non-uniformity of the load distribution. Failures of these structural components may lead to disastrous consequence of the jack-up. Despite the importance of these components, it is difficult to give an accurate prediction of the load distribution on these components in engineering application due to the complex nonlinear interaction mechanism, which is influenced by the relative stiffness of the components, leg-guide clearance and backlash. Previous studies mainly focus on the global performance of the jack-up and pay little attention to the load distribution on the pinions and chocks. The strength of the jacking system is often guaranteed by the manufacturer for an estimate load level, which brings in uncertainty to the safety of the jack-up. The characteristics of the hull-leg interaction are discussed in this paper, and a simplified method using gap elements is proposed. The nonlinear structural analyses are carried out for a specific jack-up using the proposed method and the three-dimensional finite element method(FEM) with contact algorithm. The proposed method is proved accurate and effective for the engineering application. The characteristics of the load distribution of the specific jack-up are discussed, and the conclusions are presented.