期刊文献+
共找到609篇文章
< 1 2 31 >
每页显示 20 50 100
Robust Machine Learning Technique to Classify COVID-19 Using Fusion of Texture and Vesselness of X-Ray Images
1
作者 Shaik Mahaboob Basha Victor Hugo Cde Albuquerque +3 位作者 Samia Allaoua Chelloug Mohamed Abd Elaziz Shaik Hashmitha Mohisin Suhail Parvaze Pathan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1981-2004,共24页
Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image a... Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image analysis and machine learning techniques.This study presents a multi-threshold-based segmentation technique to probe high pixel intensity regions in CXR images of various pathologies,including normal cases.Texture information is extracted using gray co-occurrence matrix(GLCM)-based features,while vessel-like features are obtained using Frangi,Sato,and Meijering filters.Machine learning models employing Decision Tree(DT)and RandomForest(RF)approaches are designed to categorize CXR images into common lung infections,lung opacity(LO),COVID-19,and viral pneumonia(VP).The results demonstrate that the fusion of texture and vesselbased features provides an effective ML model for aiding diagnosis.The ML model validation using performance measures,including an accuracy of approximately 91.8%with an RF-based classifier,supports the usefulness of the feature set and classifier model in categorizing the four different pathologies.Furthermore,the study investigates the importance of the devised features in identifying the underlying pathology and incorporates histogrambased analysis.This analysis reveals varying natural pixel distributions in CXR images belonging to the normal,COVID-19,LO,and VP groups,motivating the incorporation of additional features such as mean,standard deviation,skewness,and percentile based on the filtered images.Notably,the study achieves a considerable improvement in categorizing COVID-19 from LO,with a true positive rate of 97%,further substantiating the effectiveness of the methodology implemented. 展开更多
关键词 Chest radiography(CXR)image COVID-19 CLASSIFIER machine learning random forest texture analysis
下载PDF
Gaussian mixture models for clustering and classifying traffic flow in real-time for traffic operation and management 被引量:1
2
作者 孙璐 张惠民 +3 位作者 高荣 顾文钧 徐冰 陈鲤梁 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期174-179,共6页
Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM ... Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc. 展开更多
关键词 traffic flow patterns Gaussian mixture model level of service data mining cluster analysis CLASSIFIER
下载PDF
Unascertained measurement classifying model of goal collapse prediction 被引量:8
3
作者 董陇军 彭刚剑 +2 位作者 付玉华 白云飞 刘有芳 《Journal of Coal Science & Engineering(China)》 2008年第2期221-224,共4页
Based on optimized forecast method of unascertained classifying,a unascer- tained measurement classifying model (UMC) to predict mining induced goaf collapse was established,The discriminated factors of the model are ... Based on optimized forecast method of unascertained classifying,a unascer- tained measurement classifying model (UMC) to predict mining induced goaf collapse was established,The discriminated factors of the model are influential factors including over- burden layer type,overburden layer thickness,the complex degree of geologic structure, the inclination angle of coal bed,volume rate of the cavity region,the vertical goaf depth from the surface and space superposition layer of the goaf region.Unascertained mea- surement (UM) function of each factor was calculated.The unascertained measurement to indicate the classification center and the grade of waiting forecast sample was determined by the UM distance between the synthesis index of waiting forecast samples and index of every classification.The training samples were tested by the established model,and the correct rate is 100%.Furthermore,the seven waiting forecast samples were predicted by the UMC model.The results show that the forecast results are fully consistent with the ac- tual situation. 展开更多
关键词 unascertained measurement classifying model GOAF collapse prediction mining engineering
下载PDF
Subaxial cervical spine injury classification system: is it most appropriate for classifying cervical injury? 被引量:4
4
作者 Rafael Martínez-Pérez Francisco Fuentes Víctor S.Alemany 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1416-1417,共2页
The cervical spine injury represents a potential devastating disease with 6% associated in-hospital mortality (lain et al., 2015). Neurological deterioration ranging from complete spinal cord injury (SCI) to incom... The cervical spine injury represents a potential devastating disease with 6% associated in-hospital mortality (lain et al., 2015). Neurological deterioration ranging from complete spinal cord injury (SCI) to incomplete SCI or single radiculopathy are potential consequences of the blunt trauma over this region. The subaxial cervical spine accounts the vast majority of cervical injuries, making up two thirds of all cervical fractures (Alday, 1996). Few classifications (Holdsworth, 1970; White et al., 1975; Mien et al., 1982; Denis, 1984; Vaccaro et al., 2007) have been proposed to describe injuries of the cervical spine for several reasons. First, to delineate the best treatment in each case; second, to determinate an accurate neurological prognosis, and third, to establish a standard way to communicate and describe specific characteristics of cervical injuries patterns. Classical systems are primarily descriptive and no single system has gained widespread use, largely because of restrictions in clinical relevance and its complexity. 展开更多
关键词 is it most appropriate for classifying cervical injury SLIC Subaxial cervical spine injury classification system
下载PDF
Classifying and ranking DMUs in interval DEA 被引量:2
5
作者 郭均鹏 吴育华 李汶华 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第4期405-407,共3页
During efficiency evaluating by DEA, the inputs and outputs of DMUs may be intervals because of insufficient information or measure error. For this reason, interval DEA is proposed. To make the efficiency scores more ... During efficiency evaluating by DEA, the inputs and outputs of DMUs may be intervals because of insufficient information or measure error. For this reason, interval DEA is proposed. To make the efficiency scores more discriminative, this paper builds an Interval Modified DEA (IMDEA) model based on MDEA. Furthermore, models of obtaining upper and lower bounds of the efficiency scores for each DMU are set up. Based on this, the DMUs are classified into three types. Next, a new order relation between intervals which can express the DM’s preference to the three types is proposed. As a result, a full and more convictive ranking is made on all the DMUs. Finally an example is given. 展开更多
关键词 interval modified DEA(IMDEA) decision making units(DMUs) order relation classify RANK
下载PDF
METHOD OF CLASSIFYING GRASPS BY ROBOT HANDS 被引量:1
6
作者 Zhang Yuru (Beijing University of Aeronautics and Astronautics William A. Gruver Simon Fraser University , Canada) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1996年第4期271-277,共2页
This research characterizes grasping by multifingered robot hands through investiga- tion of the space of contact forces into four subspaces , a method is developed to determine the di- mensions of the subspaces with ... This research characterizes grasping by multifingered robot hands through investiga- tion of the space of contact forces into four subspaces , a method is developed to determine the di- mensions of the subspaces with respect to the connectivity of the object. The relationship reveals the differences between three types of grasps classified and indicates how the contact force can be decomposed corresponding to each type of grasp. The subspaces and the determination of their di- mensions are illlustrated by examples. 展开更多
关键词 Robot hand classifying grasp Contact force
全文增补中
A Geographic Information Systems approach for classifying and mapping forest management category in Baihe Forestry Bureau, Northeast China 被引量:2
7
作者 WANG Shun-zhong SHAO Guo-fan +2 位作者 GU Hui-yan WANG Qing-li DAI Li-min 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第3期211-215,共5页
This paper demonstrates a Geographic Information Systems (GIS) procedure of classifying and mapping forest management category in Baihe Forestry Burea, Jilin Province, China. Within the study area, Baihe Forestry Bu... This paper demonstrates a Geographic Information Systems (GIS) procedure of classifying and mapping forest management category in Baihe Forestry Burea, Jilin Province, China. Within the study area, Baihe Forestry Bureau land was classified into a two-hierarchy system. The top-level class included the non-forest and forest. Over 96% of land area is forest in the study area, which was further divided into key ecological service forest (KES), general ecological service forest (GES), and commodity forest (COM). COM covered 45.0% of the total land area and was the major forest management type in Baihe Forest Bureau. KES and GES accounted for 21.2% and 29.9% of the total land area, respectively. The forest management zones designed with GIS in this study were then compared with the forest management zones established using the hand draw by the local agency. There were obvious differences between the two products. It suggested that the differences had some to do with the data sources, basic unit and mapping procedures. It also suggested that the GIS method was a useful tool in integrating forest inventory data and other data for classifying and mapping forest zones to meet the needs of the classified forest management system. 展开更多
关键词 Classified forest management Key ecological service forest: GIS: Baihe Forestry Bureau
下载PDF
The Motion Trace of Particles in Classifying Flow Field 被引量:1
8
作者 黎国华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第2期71-73,共3页
According to the theory of the stochastic trajectory model of particle in the gas-solid two-phase flows, the two-phase turbulence model between the blades in the inner cavity of the FW-Φ150 horizontal turbo classifie... According to the theory of the stochastic trajectory model of particle in the gas-solid two-phase flows, the two-phase turbulence model between the blades in the inner cavity of the FW-Φ150 horizontal turbo classifier was established, and the commonly-used PHOENICS code was adopted to carried out the numerical simulation. It was achieved the flow characteristics under a certain condition as well as the motion trace of particles with different diameters entering from certain initial location and passing through the flow field between the blades under the correspondent condition. This research method quite directly demonstrates the motion of particles. An experiment was executed to prove the accuracy of the results of numerical simulation. 展开更多
关键词 stochastic trajectory model turbo classifier numerical simulation motion trace
下载PDF
Classifying Abdominal Fat Distribution Patterns byUsing Body Measurement Data
9
作者 Jingjing Sun Bugao Xu +1 位作者 Jane Lee Jeanne H.Freeland-Graves 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第3期1189-1202,共14页
This study aims to explore new categorization that characterizes the distribution clusters of visceral and subcutaneous adipose tissues(VAT and SAT)measured by magnetic resonance imaging(MRI),to analyze the relationsh... This study aims to explore new categorization that characterizes the distribution clusters of visceral and subcutaneous adipose tissues(VAT and SAT)measured by magnetic resonance imaging(MRI),to analyze the relationship between the VAT-SAT distribution patterns and the novel body shape descriptors(BSDs),and to develop a classifier to predict the fat distribution clusters using the BSDs.In the study,66 male and 54 female participants were scanned by MRI and a stereovision body imaging(SBI)to measure participants’abdominal VAT and SAT volumes and the BSDs.A fuzzy c-means algorithm was used to form the inherent grouping clusters of abdominal fat distributions.A support-vector-machine(SVM)classifier,with an embedded feature selection scheme,was employed to determine an optimal subset of the BSDs for predicting internal fat distributions.A fivefold cross-validation procedure was used to prevent over-fitting in the classification.The classification results of the BSDs were compared with those of the traditional anthropometric measurements and the Dual Energy X-Ray Absorptiometry(DXA)measurements.Four clusters were identified for abdominal fat distributions:(1)low VAT and SAT,(2)elevated VAT and SAT,(3)higher SAT,and(4)higher VAT.The cross-validation accuracies of the traditional anthropometric,DXA and BSD measurements were 85.0%,87.5% and 90%,respectively.Compared to the traditional anthropometric and DXA measurements,the BSDs appeared to be effective and efficient in predicting abdominal fat distributions. 展开更多
关键词 Abdominal fat distribution body shape descriptor SVM classifier
下载PDF
Tracking the historical urban development by classifying Landsat MSS data with training samples migrated across time and space
10
作者 Zemin Feng Yuqing Liu +1 位作者 Yan Shi Jun Yang 《International Journal of Digital Earth》 SCIE EI 2023年第1期2487-2502,共16页
To reveal the historical urban development in large areas using satellite data such as Landsat MSS still need to overcome many challenges.One of them is the need for high-quality training samples.This study tested the... To reveal the historical urban development in large areas using satellite data such as Landsat MSS still need to overcome many challenges.One of them is the need for high-quality training samples.This study tested the feasibility of migrating training samples collected from Landsat MSS data across time and space.We migrated training samples collected for Washington,D.C.in 1979 to classify the city’s land covers in 1982 and 1984.The classifier trained with Washington,D.C.’s samples were used in classifying Boston’s and Tokyo’s land covers.The results showed that the overall accuracies achieved using migrated samples in 1982(66.67%)and 1984(65.67%)for Washington,D.C.were comparable to that of 1979(68.67%)using a random forest classifier.Migration of training samples between cities in the same urban ecoregion,i.e.Washington,D.C.,and Boston,achieved higher overall accuracy(59.33%)than cities in the different ecoregions(Tokyo,50.33%).We concluded that migrating training samples across time and space in the same urban ecoregion are feasible.Ourfindings can contribute to using Landsat MSS data to reveal the historical urbanization pattern on a global scale. 展开更多
关键词 Land cover CLASSIFIER training samples Landsat MSS KH-9
原文传递
Indoor metabolites and chemicals outperform microbiome in classifying childhood asthma and allergic rhinitis
11
作者 Yu Sun Hao Tang +15 位作者 Shuang Du Yang Chen Zheyuan Ou Mei Zhang Zhuoru Chen Zhiwei Tang Dongjun Zhang Tianyi Chen Yanyi Xu Jiufeng Li Dan Norback Jamal Hisham Hashim Zailina Hashim Jie Shao Xi Fu Zhuohui Zhao 《Eco-Environment & Health》 2023年第4期208-218,共11页
Indoor microorganisms impact asthma and allergic rhinitis(AR),but the associated microbial taxa often vary extensively due to climate and geographical variations.To provide more consistent environmental assessments,ne... Indoor microorganisms impact asthma and allergic rhinitis(AR),but the associated microbial taxa often vary extensively due to climate and geographical variations.To provide more consistent environmental assessments,new perspectives on microbial exposure for asthma and AR are needed.Home dust from 97 cases(32 asthma alone,37 AR alone,28 comorbidity)and 52 age-and gender-matched controls in Shanghai,China,were analyzed using high-throughput shotgun metagenomic sequencing and liquid chromatography-mass spectrometry.Homes of healthy children were enriched with environmental microbes,including Paracoccus,Pseudomonas,and Psychrobacter,and metabolites like keto acids,indoles,pyridines,and flavonoids(astragalin,hesperidin)(False Discovery Rate<0.05).A neural network co-occurrence probability analysis revealed that environmental microorganisms were involved in producing these keto acids,indoles,and pyridines.Conversely,homes of diseased children were enriched with mycotoxins and synthetic chemicals,including herbicides,insecticides,and food/cosmetic additives.Using a random forest model,characteristic metabolites and microorganisms in Shanghai homes were used to classify high and low prevalence of asthma/AR in an independent dataset in Malaysian schools(N=1290).Indoor metabolites achieved an average accuracy of 74.9%and 77.1%in differentiating schools with high and low prevalence of asthma and AR,respectively,whereas indoor microorganisms only achieved 51.0%and 59.5%,respectively.These results suggest that indoor metabolites and chemicals rather than indoor microbiome are potentially superior environmental indicators for childhood asthma and AR.This study extends the traditional risk assessment focusing on allergens or air pollutants in childhood asthma and AR,thereby revealing potential novel intervention strategies for these diseases. 展开更多
关键词 Dust Environmental classifier Home INDOOR ALLERGY
下载PDF
The 2024 Compendium of Physical Activities and its expansion
12
作者 Stephen D.Herrmann Erik A.Willis Barbara E.Ainsworth 《Journal of Sport and Health Science》 SCIE CSCD 2024年第1期1-2,F0003,共3页
First developed 30 years ago,the Compendium of Physical Activities(Compendium)was created to provide a standardized way of measuring and classifying specific physical activities(PAs),allowing researchers and health pr... First developed 30 years ago,the Compendium of Physical Activities(Compendium)was created to provide a standardized way of measuring and classifying specific physical activities(PAs),allowing researchers and health professionals to assess the energy expenditure and health benefits associated with different PA.1Since its inception,the Compendium has been widely utilized and recognized as a fundamental PA and health resource. 展开更多
关键词 HAS utilized classify
下载PDF
Detection of Turbulence Anomalies Using a Symbolic Classifier Algorithm in Airborne Quick Access Record(QAR)Data Analysis 被引量:1
13
作者 Zibo ZHUANG Kunyun LIN +1 位作者 Hongying ZHANG Pak-Wai CHAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1438-1449,共12页
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ... As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards. 展开更多
关键词 turbulence detection symbolic classifier quick access recorder data
下载PDF
基于Extra Tree Classifier的水质安全建模预测
14
作者 杨丽佳 陈新房 +1 位作者 赵晗清 汪世伟 《电脑与电信》 2024年第6期57-61,共5页
随着工业化和城市化的快速发展,水质安全问题日益受到关注。本研究利用一个包含7999条数据记录的水质分析数据集,涵盖多种化学物质浓度测量值与安全阈值,以及“是否安全”分类变量,运用Extr aTree Classifier模型进行水质安全建模预测... 随着工业化和城市化的快速发展,水质安全问题日益受到关注。本研究利用一个包含7999条数据记录的水质分析数据集,涵盖多种化学物质浓度测量值与安全阈值,以及“是否安全”分类变量,运用Extr aTree Classifier模型进行水质安全建模预测及数据分析。本研究目的在于提供一个可靠的模型,以帮助决策者和相关部门更好地监测和维护水质安全,从而保障公众健康和环境可持续发展。 展开更多
关键词 水质安全 Lazy Predict Extra Tree Classifier k折交叉验证 机器学习
下载PDF
Intrusion Detection System Using Classification Algorithms with Feature Selection Mechanism over Real-Time Data Traffic
15
作者 Gulab Sah Sweety Singh Subhasish Banerjee 《China Communications》 SCIE CSCD 2024年第9期292-320,共29页
The key objective of intrusion detection systems(IDS)is to protect the particular host or network by investigating and predicting the network traffic as an attack or normal.These IDS uses many methods of machine learn... The key objective of intrusion detection systems(IDS)is to protect the particular host or network by investigating and predicting the network traffic as an attack or normal.These IDS uses many methods of machine learning(ML)to learn from pastexperience attack i.e.signatures based and identify the new ones.Even though these methods are effective,but they have to suffer from large computational costs due to considering all the traffic features,together.Moreover,emerging technologies like the Internet of Things(Io T),big data,etc.are getting advanced day by day;as a result,network traffics are also increasing rapidly.Therefore,the issue of computational cost needs to be addressed properly.Thus,in this research,firstly,the ML methods have been used with the feature selection technique(FST)to reduce the number of features by picking out only the important ones from NSL-KDD,CICIDS2017,and CIC-DDo S2019datasets later that helped to build IDSs with lower cost but with the higher performance which would be appropriate for vast scale network.The experimental result demonstrated that the proposed model i.e.Decision tree(DT)with Recursive feature elimination(RFE)performs better than other classifiers with RFE in terms of accuracy,specificity,precision,sensitivity,F1-score,and G-means on the investigated datasets. 展开更多
关键词 CICIDS2017 dataset CLASSIFIERS IDS ML NSL KDD dataset RFE
下载PDF
Exploring the Core-shell Structure of BaTiO3-based Dielectric Ceramics Using Machine Learning Models and Interpretability Analysis
16
作者 孙家乐 XIONG Peifeng +1 位作者 郝华 LIU Hanxing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期561-569,共9页
A machine learning(ML)-based random forest(RF)classification model algorithm was employed to investigate the main factors affecting the formation of the core-shell structure of BaTiO_(3)-based ceramics and their inter... A machine learning(ML)-based random forest(RF)classification model algorithm was employed to investigate the main factors affecting the formation of the core-shell structure of BaTiO_(3)-based ceramics and their interpretability was analyzed by using Shapley additive explanations(SHAP).An F1-score changed from 0.8795 to 0.9310,accuracy from 0.8450 to 0.9070,precision from 0.8714 to 0.9000,recall from 0.8929 to 0.9643,and ROC/AUC value of 0.97±0.03 was achieved by the RF classification with the optimal set of features containing only 5 features,demonstrating the high accuracy of our model and its high robustness.During the interpretability analysis of the model,it was found that the electronegativity,melting point,and sintering temperature of the dopant contribute highly to the formation of the core-shell structure,and based on these characteristics,specific ranges were delineated and twelve elements were finally obtained that met all the requirements,namely Si,Sc,Mn,Fe,Co,Ni,Pd,Er,Tm,Lu,Pa,and Cm.In the process of exploring the structure of the core-shell,the doping elements can be effectively localized to be selected by choosing the range of features. 展开更多
关键词 machine learning BaTiO_(3) core-shell structure random forest classifier
原文传递
Detecting Malicious Uniform Resource Locators Using an Applied Intelligence Framework
17
作者 Simona-Vasilica Oprea Adela Bara 《Computers, Materials & Continua》 SCIE EI 2024年第6期3827-3853,共27页
The potential of text analytics is revealed by Machine Learning(ML)and Natural Language Processing(NLP)techniques.In this paper,we propose an NLP framework that is applied to multiple datasets to detect malicious Unif... The potential of text analytics is revealed by Machine Learning(ML)and Natural Language Processing(NLP)techniques.In this paper,we propose an NLP framework that is applied to multiple datasets to detect malicious Uniform Resource Locators(URLs).Three categories of features,both ML and Deep Learning(DL)algorithms and a ranking schema are included in the proposed framework.We apply frequency and prediction-based embeddings,such as hash vectorizer,Term Frequency-Inverse Dense Frequency(TF-IDF)and predictors,word to vector-word2vec(continuous bag of words,skip-gram)from Google,to extract features from text.Further,we apply more state-of-the-art methods to create vectorized features,such as GloVe.Additionally,feature engineering that is specific to URL structure is deployed to detect scams and other threats.For framework assessment,four ranking indicators are weighted:computational time and performance as accuracy,F1 score and type error II.For the computational time,we propose a new metric-Feature Building Time(FBT)as the cutting-edge feature builders(like doc2vec or GloVe)require more time.By applying the proposed assessment step,the skip-gram algorithm of word2vec surpasses other feature builders in performance.Additionally,eXtreme Gradient Boost(XGB)outperforms other classifiers.With this setup,we attain an accuracy of 99.5%and an F1 score of 0.99. 展开更多
关键词 Detecting malicious URL CLASSIFIERS text to feature deep learning ranking algorithms feature building time
下载PDF
CL2ES-KDBC:A Novel Covariance Embedded Selection Based on Kernel Distributed Bayes Classifier for Detection of Cyber-Attacks in IoT Systems
18
作者 Talal Albalawi P.Ganeshkumar 《Computers, Materials & Continua》 SCIE EI 2024年第3期3511-3528,共18页
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo... The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks. 展开更多
关键词 IoT security attack detection covariance linear learning embedding selection kernel distributed bayes classifier mongolian gazellas optimization
下载PDF
Improving Badminton Action Recognition Using Spatio-Temporal Analysis and a Weighted Ensemble Learning Model
19
作者 Farida Asriani Azhari Azhari Wahyono Wahyono 《Computers, Materials & Continua》 SCIE EI 2024年第11期3079-3096,共18页
Incredible progress has been made in human action recognition(HAR),significantly impacting computer vision applications in sports analytics.However,identifying dynamic and complex movements in sports like badminton re... Incredible progress has been made in human action recognition(HAR),significantly impacting computer vision applications in sports analytics.However,identifying dynamic and complex movements in sports like badminton remains challenging due to the need for precise recognition accuracy and better management of complex motion patterns.Deep learning techniques like convolutional neural networks(CNNs),long short-term memory(LSTM),and graph convolutional networks(GCNs)improve recognition in large datasets,while the traditional machine learning methods like SVM(support vector machines),RF(random forest),and LR(logistic regression),combined with handcrafted features and ensemble approaches,perform well but struggle with the complexity of fast-paced sports like badminton.We proposed an ensemble learning model combining support vector machines(SVM),logistic regression(LR),random forest(RF),and adaptive boosting(AdaBoost)for badminton action recognition.The data in this study consist of video recordings of badminton stroke techniques,which have been extracted into spatiotemporal data.The three-dimensional distance between each skeleton point and the right hip represents the spatial features.The temporal features are the results of Fast Dynamic Time Warping(FDTW)calculations applied to 15 frames of each video sequence.The weighted ensemble model employs soft voting classifiers from SVM,LR,RF,and AdaBoost to enhance the accuracy of badminton action recognition.The E2 ensemble model,which combines SVM,LR,and AdaBoost,achieves the highest accuracy of 95.38%. 展开更多
关键词 Weighted ensemble learning badminton action soft voting classifier joint skeleton fast dynamic time warping SPATIOTEMPORAL
下载PDF
Software Reliability Prediction Using Ensemble Learning on Selected Features in Imbalanced and Balanced Datasets: A Review
20
作者 Suneel Kumar Rath Madhusmita Sahu +5 位作者 Shom Prasad Das Junali Jasmine Jena Chitralekha Jena Baseem Khan Ahmed Ali Pitshou Bokoro 《Computer Systems Science & Engineering》 2024年第6期1513-1536,共24页
Redundancy,correlation,feature irrelevance,and missing samples are just a few problems that make it difficult to analyze software defect data.Additionally,it might be challenging to maintain an even distribution of da... Redundancy,correlation,feature irrelevance,and missing samples are just a few problems that make it difficult to analyze software defect data.Additionally,it might be challenging to maintain an even distribution of data relating to both defective and non-defective software.The latter software class’s data are predominately present in the dataset in the majority of experimental situations.The objective of this review study is to demonstrate the effectiveness of combining ensemble learning and feature selection in improving the performance of defect classification.Besides the successful feature selection approach,a novel variant of the ensemble learning technique is analyzed to address the challenges of feature redundancy and data imbalance,providing robustness in the classification process.To overcome these problems and lessen their impact on the fault classification performance,authors carefully integrate effective feature selection with ensemble learning models.Forward selection demonstrates that a significant area under the receiver operating curve(ROC)can be attributed to only a small subset of features.The Greedy forward selection(GFS)technique outperformed Pearson’s correlation method when evaluating feature selection techniques on the datasets.Ensemble learners,such as random forests(RF)and the proposed average probability ensemble(APE),demonstrate greater resistance to the impact of weak features when compared to weighted support vector machines(W-SVMs)and extreme learning machines(ELM).Furthermore,in the case of the NASA and Java datasets,the enhanced average probability ensemble model,which incorporates the Greedy forward selection technique with the average probability ensemble model,achieved remarkably high accuracy for the area under the ROC.It approached a value of 1.0,indicating exceptional performance.This review emphasizes the importance of meticulously selecting attributes in a software dataset to accurately classify damaged components.In addition,the suggested ensemble learning model successfully addressed the aforementioned problems with software data and produced outstanding classification performance. 展开更多
关键词 Ensemble classifier hybrid classifier software reliability prediction
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部