期刊文献+
共找到451篇文章
< 1 2 23 >
每页显示 20 50 100
Determining the surface fault-rupture hazard zone for the Pazarcık segment of the East Anatolian fault zone through comprehensive analysis of surface rupture from the February 6,2023,Earthquake(Mw 7.7)
1
作者 Mustafa SOFTA 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2646-2663,共18页
Following surface rupture observations in populated areas affected by the KahramanmaraşEarthquake(Mw 7.7)on February 6th,2023,along the Pazarcık segment of the East Anatolian Fault Zone(EAFZ),this study presents novel... Following surface rupture observations in populated areas affected by the KahramanmaraşEarthquake(Mw 7.7)on February 6th,2023,along the Pazarcık segment of the East Anatolian Fault Zone(EAFZ),this study presents novel insights into physical criteria for delineating surface fault-rupture hazard zones(SRHZs)along ruptured strike-slip faults.To achieve this objective,three trench studies across the surface rupture were conducted on the Pazarcık segment of the EAFZ to collect field data,and earthquake recurrence intervals were interpreted using Bayesian statistics from previously conducted paleoseismological trenchings.The results of the proposed model indicate that the Pazarcık segment produced five significant surface-rupturing earthquakes in the last∼11 kyr:E1:11.13±1.74 kyr,E2:7.62±1.20 kyr,E3:5.34±1.05 kyr,E4:1.82±0.93 kyr,and E5:0.35±0.11 kyr.In addition,the recurrence intervals of destructive earthquakes on the subject in question range from 0.6 kyr to 4.8 kyr.Considering that the last significant earthquake occurred in 1513,the longest time since the most recent surface fault rupturing earthquake on this particular segment was 511 years.These results indicate that,in terms of the theoretical recurrence interval of earthquakes that can create surface ruptures on the Pazarcık segment,the period in which the February 6,2023,earthquake occurred was within the end of the expected return period.As a result,the potential for a devastating earthquake in the near future is not foreseen on the same fault.Finally,the SRHZ proposed for the Pazarcık section of Gölbaşıvillage was calculated as a 61-meter-wide offset on the fault lineament to reduce the negativities that may occur in the ruptured area in the future.It is recommended to take into account this width in the settlement of this area and nearby areas. 展开更多
关键词 surface rupture Earthquake mitigation Recurrence interval Pazarcık segment East Anatolian Fault Zone(EAFZ)
原文传递
Preliminary report of coseismic surface rupture(part)of Türkiye's M_(W)7.8 earthquake by remote sensing interpretation
2
作者 Yali Guo Haofeng Li +3 位作者 Peng Liang Renwei Xiong Chaozhong Hu Yueren Xu 《Earthquake Research Advances》 CSCD 2024年第1期4-13,共10页
Both M_(W) 7.8 and M_(W) 7.5 earthquakes occurred in southeastern Türkiye on February 6,2023,resulting in numerous buildings collapsing and serious casualties.Understanding the distribution of coseismic surface r... Both M_(W) 7.8 and M_(W) 7.5 earthquakes occurred in southeastern Türkiye on February 6,2023,resulting in numerous buildings collapsing and serious casualties.Understanding the distribution of coseismic surface ruptures and secondary disasters surrounding the epicentral area is important for post-earthquake emergency and disaster assessments.High-resolution Maxar and GF-2 satellite data were used after the events to extract the location of the rupture surrounding the first epicentral area.The results show that the length of the interpreted surface rupture zone(part of)is approximately 75 km,with a coseismic sinistral dislocation of 2-3 m near the epicenter;however,this reduced to zero at the tip of the southwest section of the East Anatolia Fault Zone.Moreover,dense soil liquefaction pits were triggered along the rupture trace.These events are in the western region of the Eurasian Seismic Belt and result from the subduction and collision of the Arabian and African Plates toward the Eurasian Plate.The western region of the Chinese mainland and its adjacent areas are in the eastern section of the Eurasian Seismic Belt,where seismic activity is controlled by the collision of the Indian and Eurasian Plates.Both China and Türkiye have independent tectonic histories. 展开更多
关键词 2023 Türkiye M_(w)7.8 earthquake Coseismic surface rupture East anatolian fault zone Eurasian seismic zone Remote sensing interpretation
下载PDF
Surface Rupture and Co-seismic Displacement Produced by the Ms 8.0 Wenchuan Earthquake of May ^(12)th,2008,Sichuan,China:Eastwards Growth of the Qinghai-Tibet Plateau 被引量:58
3
作者 DONG Shuwen ZHANG Yueqiao WU Zhenhan YANG Non MA Yinsheng SHI Wei CHEN Zhengle LONG Changxin AN Meijian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第5期938-948,共11页
An earthquake of Ms 8 struck Wenchuan County, western Sichuan, China, on May 12^th, 2008 and resulted in long surface ruptures (〉300 km). The first-hand observations about the surface ruptures produced by the earth... An earthquake of Ms 8 struck Wenchuan County, western Sichuan, China, on May 12^th, 2008 and resulted in long surface ruptures (〉300 km). The first-hand observations about the surface ruptures produced by the earthquake in the worst-hit areas of Yingxiu, Beichuan and Qingchuan, ascertained that the causative structure of the earthquake was in the central fault zones of the Longmenshan tectonic belt. Average co-seismic vertical displacements along the individual fault of the Yingxiu-Beiehuan rupture zone reach 2.514 m and the cumulative vertical displacements across the central and frontal Longmenshan fault belt is about 5-6 m. The surface rupture strength was reduced from north of Beichuan to Qingchuan County and shows 2-3 m dextral strike-slip component. The Wenchuan thrust-faulting earthquake is a manifestation of eastward growth of the Tibetan Plateau under the action of continuous convergence of the Indian and Eurasian continents. 展开更多
关键词 Ms 8.0 Wenchuan earthquake surface ruptures co-seismic displacement eastern Tibet
下载PDF
Parameters of Coseismic Reverse- and Oblique-Slip Surface Ruptures of the 2008 Wenchuan Earthquake,Eastern Tibetan Plateau 被引量:30
4
作者 XU Xiwei YU Guihua +4 位作者 CHEN Guihua RAN Yongkang LI Chenxia CHEN Yuegau CHANG Chungpai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第4期673-684,共12页
On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan platea... On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan plateau. Field investigations constrain the surface rupture pattern, length and offsets related to the Wenchuan earthquake. The Beichuan fault has a NE-trending rightlateral reverse rupture with a total length of 240 km. Reassessment yields a maximum vertical offset of 6.5±0.5 m and a maximum right-lateral offset of 4.9±0.5 m for its northern segment, which are the largest offsets found; the maximum vertical offset is 6.2±0.5 m for its southern segment. The Pengguan fault has a NE-trending pure reverse rupture about 72 km long with a maximum vertical offset of about 3.5 m. The Xiaoyudong fault has a NW-striking left-lateral reverse rupture about 7 km long between the Beichuan and Pengguan faults, with a maximum vertical offset of 3.4 m and left-lateral offset of 3.5 m. This pattern of multiple co-seismic surface ruptures is among the most complicated of recent great earthquakes and presents a much larger danger than if they ruptured individually. The rupture length is the longest for reverse faulting events ever reported. 展开更多
关键词 surface rupture zone coseismic offset Wenchuan earthquake LONGMENSHAN
下载PDF
Rapid Identification and Emergency Investigation of Surface Ruptures and Geohazards Induced by the M_s 7.1 Yushu Earthquake 被引量:17
5
作者 ZHANG Yongshuang YAO Xin +4 位作者 XIONG Tanyu MA Yinsheng HU Daogong YANG Nong GUO Changbao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第6期1315-1327,共13页
The rapid identification based on InSAR technology was proved to be effective in our emergency investigation of surface ruptures and geohazards induced by the Yushu earthquake.The earthquake-generating fault of the Yu... The rapid identification based on InSAR technology was proved to be effective in our emergency investigation of surface ruptures and geohazards induced by the Yushu earthquake.The earthquake-generating fault of the Yushu earthquake is the Yushu section of the Garze-Yushu faults zone.It strikes NWW-NW,23 km long near the Yushu County seat,dominated by left-lateral strike slip,and appearing as a surface rupture zone.The macroscopic epicenter is positioned at Guo-yang-yan -song-duo of Gyegu Town(33°03'11"N,96°51'26"E),where the co-seismic horizontal offset measured is 1.75 m.Geohazards induced by the Yushu earthquake are mainly rockfalls,landslides,debris flows, and unstable slopes.They are controlled by the earthquake-generating fault and are mostly distributed along it.There are several geohazard chains having been established,such as earthquake,canal damage,soil liquefying,landslide-debris flow,earthquake,soil liquefying,roadbed deformation,etc.In order to prevent seismic hazards,generally,where there is a visible surface rupture induced by the Yushu earthquake,reconstruction should be at least beyond 20 m,on each side,from it.Sufficient attention should also be given to potential geohazards or geohazard chains induced by the earthquake. 展开更多
关键词 Yushu earthquake InSAR surface rupture macroscopic epicenter earthquake geohazard
下载PDF
Surface Rupture of the 1515 Yongsheng Earthquake in Northwest Yunnan, and Its Seismogeological Implications 被引量:12
6
作者 HUANG Xiaolong WU Zhonghai WU Kungang 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第4期1324-1333,共10页
The 1515 M7/4 Yongsheng earthquake is the strongest earthquake historically in northwest Yunnan. However, its time, magnitude and the seismogenic fault have long been a topic of dispute. In order to accurately define ... The 1515 M7/4 Yongsheng earthquake is the strongest earthquake historically in northwest Yunnan. However, its time, magnitude and the seismogenic fault have long been a topic of dispute. In order to accurately define those problems, a 1:50000 active tectonic mapping was carried out along the northern segment of the Chenghai-Binchuan fault zone. The result shows that there is an at least 25 km- long surface rupture and a series of seismic landslides distributed along the Jinguan fault and the Chenghai fault. Radiocarbon dating of the 14C samples indicates that the surface rupture should be a part of the deformation zone caused by the Yongsheng earthquake in the year 1515. The distribution characteristics of this surface rupture indicate that the macroscopic epicenter of the 1515 Yongsheng earthquake may be located near Hongshiya, and the seismogenic fault of this earthquake is the Jinguan- Chenghai fault, the northern part of the Chenghai-Binchuan fault zone. Striations on the surface rupture show that the latest motion of the fault is normal faulting. The maximum co-seismic vertical displacement can be 3.8 m, according to the empirical formula for the fault displacement and moment magnitude relationship, the moment magnitude of the Yongsheng earthquake was Mw 7.3-7.4. Furthermore, combining published age data with the 14C data in this paper reveals that at least four large earthquakes of similar size to the 1515 Yongsheng earthquake, have taken place across the northern segment of the Chenghai-Binchuan fault zone since 17190~50 yr. BP. The in-situ recurrence interval of Mw 7.3-7.4 characteristic earthquakes in Yongsheng along this fault zone is possibly on the order of 6 ka. 展开更多
关键词 historical earthquake earthquake surface rupture normal fault Chenghai-Binchuan fault zone Southeastern margin of the Tibetan Plateau
下载PDF
An approach to evaluate ground surface rupture caused by reverse fault movement 被引量:6
7
作者 赵纪生 陶夏新 +1 位作者 师黎静 王海云 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第1期29-39,共11页
An approach for estimating ground surface rupture caused by strong earthquakes is presented in this paper, where the finite element (FE) method of continuous and discontinuous coalescent displacement fields is adopt... An approach for estimating ground surface rupture caused by strong earthquakes is presented in this paper, where the finite element (FE) method of continuous and discontinuous coalescent displacement fields is adopted. The onset condition of strain localization is introduced to detect the formation of the slippage line. In the analysis, the Drucker-Prager constitutive model is used for soils and the rate- and state-dependent friction law is used on the slippage line to simulate the evolution of the sliding. A simple application to evaluate the ground surface rupture induced by a reverse fault movement is provided, and the numerical simulation shows good agreement with failure characteristics observed in the field after strong earthquakes. 展开更多
关键词 surface rupture reverse fault localized band slippage line onset and evolution strain localization friction law
下载PDF
Surface rupture zone of the 1303 Hongtong M=8 earthquake, Shanxi Province 被引量:4
8
作者 JIANG Wa-li(江娃利) +5 位作者 DENG Qi-dong(邓起东) XU Xi-wei(徐锡伟) XIE Xin-sheng(谢新生) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第4期389-397,共9页
Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990s up to the present, the characteristics of distribution and displacement of surf... Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990s up to the present, the characteristics of distribution and displacement of surface rup-ture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable. 展开更多
关键词 M = 8 earthquake surface rupture zone changeability of rupture scale
下载PDF
Deformation of the Most Recent Co-seismic Surface Ruptures Along the Garzê–Yushu Fault Zone(Dangjiang Segment)and Tectonic Implications For the Tibetan Plateau 被引量:3
9
作者 WU Jiwen HUANG Xuemeng XIE Furen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期443-454,共12页
The Garzê–Yushu strike-slip fault in central Tibet is the locus of strong earthquakes(M 〉 7). The deformation and geometry of the co-seismic surface ruptures are reflected in the surface morphology of the fau... The Garzê–Yushu strike-slip fault in central Tibet is the locus of strong earthquakes(M 〉 7). The deformation and geometry of the co-seismic surface ruptures are reflected in the surface morphology of the fault and depend on the structure of the upper crust as well as the pre-existing tectonics. Therefore, the most recent co-seismic surface ruptures along the Garzê–Yushu fault zone(Dangjiang segment) reveal the surface deformation of the central Tibetan Plateau. Remote sensing images and field investigations suggest a 85 km long surface rupture zone(striking NW-NWW), less than 50 m wide, defined by discontinuous fault scarps, right-stepping en echelon tensional cracks and left-stepping mole tracks that point to a left-lateral strike-slip fault. The gullies that cross fault scarps record systematic left-lateral offsets of 1.8 m to 5.0 m owing to the most recent earthquake, with moment magnitude of about M 7.5, in the Dangjiang segment. Geological and geomorphological features suggest that the spatial distribution of the 1738 co-seismic surface rupture zone was controlled by the pre-existing active Garzê–Yushu fault zone(Dangjiang segment). We confirm that the Garzê–Yushu fault zone, a boundary between the Bayan Har Block to the north and the Qiangtang Block to the south, accommodates the eastward extrusion of the Tibetan Plateau and generates strong earthquakes that release the strain energy owing to the relative motion between the Bayan Har and Qiangtang Blocks. 展开更多
关键词 co-seismic surface rupture zone strike-slip fault Dangjiang fault Garzê–Yushu fault zone Tibetan Plateau Proto-Tethys
下载PDF
Segmentations of active normal dip-slip faults around Ordos block according to their surface ruptures in historical strong earthquakes 被引量:2
10
作者 沈德福 江娃利 +1 位作者 肖振敏 谢新生 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2000年第5期552-562,共11页
From the results of researches of active faults in resent years, a correlation analysis between segments of the faults according to surface ruptures in nine historical strong earthquakes occurring in downfaulted syste... From the results of researches of active faults in resent years, a correlation analysis between segments of the faults according to surface ruptures in nine historical strong earthquakes occurring in downfaulted system and active structures around Ordos block is conducted in paper. The result shows that there is a good correlation between them, except few individual data that have more uncertain parameters. It shows that intensity and segments of surface ruptures in these strong earthquakes are intrinsically related with the active structures. These strong earthquakes produced stable and unstable rupture boundaries of characteristic-earthquake type and successive occurrence of strong earthquakes on the different boundary faults in the same tectonic unit. 展开更多
关键词 surface rupture fault segmentation historical strong earthquakes normal dip-slip faults Ordos block
下载PDF
The Surface Rupture Zone and Coseismic Deformation Produced by the Yutian Ms7.3 Earthquake of 21 March 2008,Xinjiang 被引量:2
11
作者 SHAN Xinjian QU Chunyan +5 位作者 WANG Chisheng ZHANG Guifang ZHANG Guohong SONG Xiaogang GUO Liming LIU Yunhua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第1期256-265,共10页
On 21 March 2008, a Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field. Our work is based on ana... On 21 March 2008, a Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field. Our work is based on analysis and interpretation to high-resolution satellite images as well as differential interferometric synthetic aperture radar (D-InSAR) data from the satellite Envisat SAR, coupled with seismicity, focal mechanism solutions and active tectonics in this region. The result shows that the 40 km-long, nearly NS trending surface rupture zone by this event lies on a range-front alluvial platform in Qira County. It is characterized by distinct linear traces and simple structure with 1-3-m-wide individual seams and maximum 6.5 m width of a collapse fracture. Along the rupture zone many secondary fractures and fault-bounded blocks are seen, exhibiting remarkable extension. The eoseismic deformation affected a large area 100~100 km2. D-InSAR analysis indicates that the interferometric deformation field is dominated by extensional faulting with a small strike-slip component. Along the causative fault, the western wall fell down and the eastern wall, that is the active unit, rose up, both with westerly vergence. Because of the big deformation gradients near the seismogenic fault, no interference fringes are seen on images, and what can be determined is a vertical displacement 70 cm or more between the two fault walls. According to the epicenter and differential occurrence times from the National Earthquake Information Center, China Earthquake Network Center, Harvard and USGS, it is suggested that the seismic fault ruptured from north to south. 展开更多
关键词 Yuntian Earthquake high resolution image D-INSAR surface rupture zone coseismic deformation field
下载PDF
3D simulation of near-fault strong ground motion: comparison between surface rupture fault and buried fault 被引量:2
12
作者 刘启方 袁一凡 金星 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第4期337-344,共8页
In this paper, near-fault strong ground motions caused by a surface rupture fault (SRF) and a buried fault (BF) are numerically simulated and compared by using a time-space-decoupled, explicit finite element metho... In this paper, near-fault strong ground motions caused by a surface rupture fault (SRF) and a buried fault (BF) are numerically simulated and compared by using a time-space-decoupled, explicit finite element method combined with a multi-transmitting formula (MTF) of an artificial boundary. Prior to the comparison, verification of the explicit element method and the MTF is conducted. The comparison results show that the final dislocation of the SRF is larger than the BF for the same stress drop on the fault plane. The maximum final dislocation occurs on the fault upper line for the SRF; however, for the BE the maximum final dislocation is located on the fault central part. Meanwhile, the PGA, PGV and PGD of long period ground motions (≤ 1 Hz) generated by the SRF are much higher than those of the BF in the near-fault region. The peak value of the velocity pulse generated by the SRF is also higher than the BE Furthermore, it is found that in a very narrow region along the fault trace, ground motions caused by the SRF are much higher than by the BF. These results may explain why SRFs almost always cause heavy damage in near-fault regions compared to buried faults. 展开更多
关键词 near fault surface rupture fault long period ground motion 3D simulation
下载PDF
High-resolution structure-from-motion models covering 160 km-long surface ruptures of the 2021 M_(W)7.4 Madoi earthquake in northern Qinghai-Tibetan Plateau 被引量:5
13
作者 Jing Liu-Zeng Wenqian Yao +9 位作者 Xiaoli Liu Yanxiu Shao Wenxin Wang Longfei Han Yan Wang Xianyang Zeng Jinyang Li Zijun Wang Zhijun Liu Hongwei Tu 《Earthquake Research Advances》 CSCD 2022年第2期38-48,共11页
The May 222021 M_(W)7.4 Madoi,Qinghai,China earthquake presented a rare opportunity to apply the modern unmanned aerial vehicle(UAV)photography method in extreme altitude and weather conditions to image surface ruptur... The May 222021 M_(W)7.4 Madoi,Qinghai,China earthquake presented a rare opportunity to apply the modern unmanned aerial vehicle(UAV)photography method in extreme altitude and weather conditions to image surface ruptures and near-field effects of earthquake-related surface deformations in the remote Tibet.High-resolution aerial photographs were acquired in the days immediately following the mainshock.The complex surface rupture patterns associated with this event were covered comprehensively at 3-6 cm resolution.This effort represents the first time that an earthquake rupture in the interior of the Qinghai-Tibetan Plateau has been fully and systematically captured by such high-resolution imagery,with an unprecedented level of detail,over its entire length.The dataset has proven valuable in documenting subtle and transient rupture features,such as the significant mole-tracks and opening fissures,which were ubiquitous coseismically but degraded during the subsequent summer storm season.Such high-quality imagery also helps to document with high fidelity the fractures of the surface rupture zone(supplements of this paper),the pattern related to how the faults ruptured to the ground surface,and the distribution of off-fault damage.In combination with other ground-based mapping efforts,the data will be analyzed in the following months to better understand the mechanics of earthquake rupture related to the fault zone rheology,rupture dynamics,and frictional properties along with the fault interface. 展开更多
关键词 UAV photography Earthquake surface rupture STRUCTURE-FROM-MOTION 2021 M_(W)7.4 Madoi earthquake
下载PDF
Surface Rupture and Hazard of Wenchuan Ms 8.0 Earthquake, Sichuan, China 被引量:1
14
作者 Yong Li Runqiu Huang +2 位作者 Liang Yan Alexander L. Densmore Rongjun Zhou 《International Journal of Geosciences》 2010年第1期21-31,共11页
Longmen Shan is located the special joint between the Qinghai-Tibetan Plateau in the west and the Yangtze craton in the east. Consisting of a series of parallel imbricated thrust, it develops, from the west to the eas... Longmen Shan is located the special joint between the Qinghai-Tibetan Plateau in the west and the Yangtze craton in the east. Consisting of a series of parallel imbricated thrust, it develops, from the west to the east, the Maoxian-Wenchuan, Yingxiu-Beichuan and Pengxian-Guanxian faults. Wenchuan Ms 8.0 earthquake is a thrust with strike-slip type, and surface ruptures are located in Yingxiu-Beichuan fault zone and Peng- xian-Guanxian fault zone. Based on the geological background, tectonic setting, the active tectonics of Long- men Shan and surface ruptures of the Wenchuan earthquake, a dynamical model to illustrate possible links between surface processes and upward extrusion of lower crustal flow channel at the eastern margin of the Tibetan plateau have been studied, and the results is the material in lower crust in the Longmen Shan moving as nearly-vertical extrusion and uplift, resulting in the surface rate of tectonic movement differing according to depth rate as well as the occurrence of large shallow Wenchuan earthquake. 展开更多
关键词 WENCHUAN EARTHQUAKE Longmen Shan surface rupture HAZARD SICHUAN China
下载PDF
Surface rupture and hazard characteristics of the Wenchuan Ms 8.0 earthquake, Sichuan, China 被引量:1
15
作者 Rong-Jun Zhou Yong Li +12 位作者 Liang Yan Jian-Cheng Lei Yi Zhang Yu-Lin He Long-Shen Chen Xiao-Gang Li Shi-Yuan Wang You-Qing Ye Yu-Fa Liu Chuan-Chuan Kang Tian-Yong Ge Qiang He Wei Huang 《Natural Science》 2010年第3期160-174,共15页
Longmen Shan is located the special joint be-tween Tibetan Plateau inland in the west and Yangtze craton in the east. Consisting of a se-ries of parallel imbricated thrust, it develops, from the west to the east, the ... Longmen Shan is located the special joint be-tween Tibetan Plateau inland in the west and Yangtze craton in the east. Consisting of a se-ries of parallel imbricated thrust, it develops, from the west to the east, the Maoxian- Wenchuan, Beichuan-Yingxiu and Pengxian- ﹡This research was supported by China National Natural Science Foundation grant 40841010, 40972083 and China National Science and Technology supporting Plan Foundation grant 2006BAC13B02-07, 2006BAC13B01-604. Guanxian faults. The Wenchuan earthquake is a thrust with strike-slip type, and thre surface ruptures are located on the Beichuan-Yingxiu fault zone and Pengxian-Guanxian fault zone. The surface rupture on the Beichuan-Yingxiu fault shows the thrust and dextral slip charac-teristic. The maximum vertical displacement of the surface rupture is about 10.3 m and the maxi-mum right-lateral displacement is about 5.85m. Though the vertical displacements and the hori-zontal displacements in the different segments have certain differences, as a whole, the ratio of the vertical displacement and the horizontal dis-placement is close to 1:1. The surface rupture on the Pengxian-Guanxian fault shows thrust and dextral characteristic. The rates of vertical dis-placements and the horizontal displacements ones on the most other segments are between 1:3 and 1:2. So the Beichuan- Yingxiu fault is a dextral-slip and thrust fault and the average ver-tical displacement is equal to the average hori-zontal displacement, while the Pengxian- Guan xian fault is thrust fault with a little dextral-slip component. The total intensity area above Ⅵ de-gree of the Wenchuan earthquake is about 333000 km2. The high earthquake intensity line stretches to N40-50°E along Longmen Shan tectonic belt. The rate of the long axis and the minor is betw- een 8:1 and 10:1. Three Ⅺ intensity regions are isolated in distribution. It presents a multipoint instantaneous characteristic of the rupture. 展开更多
关键词 WENCHUAN EARTHQUAKE Longmen Shan surface rupture HAZARD SICHUAN China
下载PDF
Surface Rupture and Coseismic Displacement of the M_S7.1 Yushu Earthquake 被引量:2
16
作者 Zhang Junlong Chen Changyun +4 位作者 Hu Chaozhong Yang Panxin Xiong Renwei Li Zhimin Ren Jinwei 《Earthquake Research in China》 2011年第2期173-188,共16页
On April 14, 2010, a devastating earthquake measured 7.1 on the Richter scale struck Yushu county, Qinghai Province, China. Field geological investigation and remote sensing interpretation show that this earthquake ge... On April 14, 2010, a devastating earthquake measured 7.1 on the Richter scale struck Yushu county, Qinghai Province, China. Field geological investigation and remote sensing interpretation show that this earthquake generated an inverse "L-shaped" surface rupture zone, approximately 50km long. The surface rupture zone can be divided into three segments. Between the northern and middle segments of the surface rupture, there is a 16km-long segment, where no rupture was observed. The middle and the southern segments are arranged in a left-step manner, and there are right-step en echelon ruptures developed in the stepovers. The seismogenic structure is the Yushu fault, which is dominated by strike-slip with a small amount of thrust component. The earthquake results from the differential movements between the southern Qiangtang Block and northern Bayan Har Block. The earthquake recurrence interval is 185a^108a. Along an approximately 20km-long part of the Garze-Yushu fault, between the southern surface rupture of Yushu Ms7. 1 earthquake and the 1896 earthquake, there is no surface rupture, its seismic risk needs further research. 展开更多
关键词 Ms7. 1 Yushu earthquake Earthquake surface rupture Coseismicdisplacement Sinistral strike-slip Recurrence interval
下载PDF
Coseismic surface rupture characteristics and earthquake damage analysis of the eastern end of the 2021 M_(S)7.4 Madoi(Qinghai)earthquake 被引量:1
17
作者 Yanbo Zhang Yueren Xu +6 位作者 Wenqiao Li Runchao Liu Ruoyu Mu Jiayi Li Da Zhang Haofeng Li Qinjian Tian 《Earthquake Research Advances》 CSCD 2022年第2期49-58,共10页
At 02:04 on May 22,2021,an M_(S)7.4 earthquake occurred in Madoi County in Qinghai Province,China.This earthquake is the largest seismic event in China since the 2008M_(S) 8.0 Wenchuan earthquake.Thus,it is critical t... At 02:04 on May 22,2021,an M_(S)7.4 earthquake occurred in Madoi County in Qinghai Province,China.This earthquake is the largest seismic event in China since the 2008M_(S) 8.0 Wenchuan earthquake.Thus,it is critical to investigate surface deformation and damage in time to accurately understand the seismogenic structure of the Madoi earthquake and the seismogenic capacity of the blocks in this region.This study focuses on the Xuema Village,located at the eastern end of the coseismic surface ruptures produced by the event,and assesses the deformation and seismic damage in this area based on field surveys,UAV photogrammetry,and ground penetrating radar(GPR).The results indicate that the rupture scale is substantially smaller at the eastern end of the rupture zone compared to other segments.En echelon type shear tensile fractures are concentrated in a width range of 50–100 m,and the width of single fractures ranges from 20 to 30 cm.In contrast,the degree of seismic damage significantly increases at this site.All of the brick and timber houses are damaged or collapsed,while the steel frame structures and the color steel houses are slightly damaged.More than 80%of the bridge decks on the Changma River Bridge collapse,similar to the terraces along the Youerqu and Changma Rivers and the cut slopes of Provincial Highway S205.We infer that the seismogenic fault of the Madoi earthquake exerts a tail effect in this segment.The tension zone has led to a reduction at the eastern end of the rupture zone,causing shaking damage.Local topography and buildings without earthquake-resistant construction along the strike of the rupture zone have undergone different levels of seismic damage. 展开更多
关键词 2021-5-22 Madoi M_(S)7.4 earthquake Coseismic surface rupture Kunlunshankou-Jiangcuo fault Bayan Har Block Tibetan Plateau
下载PDF
Discovery of the Surface Rupture Zone on the South of Helishan in Gaotai,Gansu Province 被引量:1
18
作者 Zheng Wenjun Zhang Peizhen +2 位作者 Yuan Daoyang Ge Weipeng Liu Jianhui 《Earthquake Research in China》 2010年第1期97-105,共9页
According to a new investigation in the northern Hexi corridor,the remains of two surface rupture zones were discovered on the southern margin fault of the Helishan. One rupture has a length of approximately 7km and t... According to a new investigation in the northern Hexi corridor,the remains of two surface rupture zones were discovered on the southern margin fault of the Helishan. One rupture has a length of approximately 7km and the other 10km. The two surface rupture zones might have been produced by the latest earthquake event. On the surface rupture is continuous scarp and free face caused by the rupture. The scarp is about 1 ~ 1. 5m high and on some sites,nearly up to 2m. According to the OSL results,the latest T1 terrace and higher flood plain forming in 3000a B. P. are dislocated by the fault. The above reveals the rupture age to be later than the T1 terrace. However,in the historical data and earthquake catalogue,we didn't find related information about the fault and surface rupture in this area. The 180 A. D. Biaoshi M8. 0 earthquake and the 756 A. D. Zhangye-Jiuquan M7. 0 earthquake are documented in historical data. It is inferred by textual research that the two earthquakes are related to the northern marginal fault of Yumushan in the south of the basin. Due to a lack of reliable evidence,there are still many arguments on this inferred conclusion. Thus we hold that the two surface rupture zones were produced by one of the two large earthquakes or other unrecorded historical event. The research on the activity and surface rupture of this fault can offer valuable information for the tectonic study and strong earthquake risk estimates of this region in the future. 展开更多
关键词 surface rupture The Helishan southern margin fault The northern Tibet Gaotai Gansu
下载PDF
Exploration of Suspected Surface Ruptures of the M_S8.0 Wenchuan Earthquake at Frontal Areas of Longmenshan Using Shallow Seismic Reflection 被引量:1
19
作者 Liu Baojin Yang Xiaoping +1 位作者 Feng Shaoying Kou Kunpeng 《Earthquake Research in China》 2009年第3期299-309,共11页
The great M_S8.0 Wenchuan earthquake on May 12,2008 was generated by abrupt faulting in the Yingxiu-Beichuan fault along the Longmenshan fault zone. The earthquake not only produced surface ruptures along the Yingxiu-... The great M_S8.0 Wenchuan earthquake on May 12,2008 was generated by abrupt faulting in the Yingxiu-Beichuan fault along the Longmenshan fault zone. The earthquake not only produced surface ruptures along the Yingxiu-Beichuan and Guanxian-Jiangyou faults,but also surface ruptures,arching of highway pavement,sand-boils and waterspouts in various degrees in areas such as Shifang and Mianzhu on the Chengdu Plain. To understand the shallow geological structures under the surface rupture zone,a 6350m long high-resolution shallow seismic reflection profile in near-EW direction was performed. This profile is located at Shigu town,Shifang city,where a suspected earthquake surface rupture zone was discovered. In this study,a group interval of 3m,shotpoint interval of 18m,and a 300-channel 25-fold observation system were used. In consideration of both near-surface reflections and dipping interface imaging,we adopted the split-spread geometry and asymmetrical zero-offset receiving technique. To better suppress random-noise and raise the signal-to-noise ratio of seismic data,30 times vertical stacking of vibrator signals was made for each common-shot gather after correlation of individual records. By using the above work method and spread geometry,we obtained high-resolution images of structures in the depth range of 15m~800m after data processing. The result shows the existence of buried thrust faults thrusting to the plain area and back-thrust faults under the surface rupture zone. It also shows that the activity of the buried thrust faults may be the main cause for folding and deformation in near-surface strata and coseismic surface rupturing. 展开更多
关键词 Ms8.0 Wenchuan earthquake surface rupture zone Shallow seismic reflectionprofile Buried thrust fault
下载PDF
Relationship between the Pre-existing Active Kunlun Fault and Co-seismic Surface Ruptures Produced by the 2001 Mw 7.8 Central Kunlun Earthquake, China
20
作者 LINAi-ruing 《地球科学进展》 CAS CSCD 2004年第3期368-372,共5页
Field investigations allow to constrain the co-seismic surface rupture zone of ~400 km with a strike-slip up to 16.3 m associated with the 2001 Mw 7.8 Central Kunlun earthquake that occurred along the western segment... Field investigations allow to constrain the co-seismic surface rupture zone of ~400 km with a strike-slip up to 16.3 m associated with the 2001 Mw 7.8 Central Kunlun earthquake that occurred along the western segmentof the Kunlun fault, northern Tibet. The co-seismic rupture structures are almost duplicated on the pre-existing fault traces of the Kunlun fault. The deformational characteristics of the co-seismic surface ruptures reveal that the earthquake had a nearly pure strike-slip mechanism. The geologic and topographic evidence clearly shows that spatialdistributions of the co-seismic surface ruptures are restricted by the pre-existing geological structures of the Kunlun fault. 展开更多
关键词 EARTHQUAKE co-seiemic surface rupture ACTIVE FAULT Pre-existing FAULT SEISMOGENIC FAULT zone
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部