The continuously collected cores from the Permo-Carboniferous coal-bearing strata of the eastern Ordos Basin are essential for studying the hydrocarbon potential in this region.This study adopted sedimentological and ...The continuously collected cores from the Permo-Carboniferous coal-bearing strata of the eastern Ordos Basin are essential for studying the hydrocarbon potential in this region.This study adopted sedimentological and geochemical methods to analyze the sedimentary environment,material composition,and geochemical characteristics of the coal-bearing strata.The differences in depositional and paleoclimatic conditions were compared;and the factors influencing the organic matter content of fine-grained sediments were explored.The depositional environment of the Benxi and Jinci formations was lagoon to tidal flat with weakly reduced waters with low salinity and dry-hot paleoclimatic conditions;while that of the Taiyuan Formation was a carbonate platform and shallow water delta front,where the water was highly reductive.The xerothermic climate alternated with the warm and humid climate.The period of maximum transgression in the Permo-Carboniferous has the highest water salinity.The Shanxi Formation was deposited in a shallow water delta front with a brackish and fresh water environment and alternative weak reductiveness.And the paleoclimate condition is dry-hot.The TOC content in fine-grained samples was averaging 1.52%.The main controlling mechanism of organic matter in this area was the input conditions according to the analysis on input and preservation of organic matter.展开更多
The Longtan Formation was originally thought to belong to the Late Permian, but this study reveals that the lower part of this formation belongs to the Middle Permian. The study proposes the corresponding chro-nostrat...The Longtan Formation was originally thought to belong to the Late Permian, but this study reveals that the lower part of this formation belongs to the Middle Permian. The study proposes the corresponding chro-nostratigraphic boundary and new schemes for the correlation of geological sections. Based on these schemes a new understanding on the accumulation regularity of Permian coal measures in South China is reached.展开更多
The Zhangwu-Heishan area is located to the east of the Fuxin-Yixian Basin and is mostly covered with volcanic rock. At various periods, different geologists had varying opinions about their age and periods of volcanic...The Zhangwu-Heishan area is located to the east of the Fuxin-Yixian Basin and is mostly covered with volcanic rock. At various periods, different geologists had varying opinions about their age and periods of volcanic eruptions, especially on sequences between volcanic rock and main coal-bearing strata, which affect the direction of searching for coal, as well as prospecting the entire research area. During our study, we carried out detailed field investigations in this research area: observed and recorded the main representative outcrops of volcanic rock. We collected over 20 volcanic rock samples and tested the Sensitive High Resolution Ion Microprobe II (SHRIMP If) U-Pb isotope age of 11 samples. The age of our volcanic rock samples ranged between 56.0 ± 2.9 and 132.3 ± 2.3 Ma. After taking earlier investigations into consideration, we concluded that, except for a suite of paleogene olivine basalt, the volcanic rock in the Zhangwu-Heishan area is younger than the coal-bearing Shahai Formation. It is therefore most unlikely to find coal seams equivalent to those of the early Cretaceous Shahai Formation in Fuxin Basin below vol- canic rock.展开更多
During the late Paleozoic to early Mesozoic,a tectonic transition occurred in Northeast China,marking a shift from the Paleo-Asian Ocean to the Mongolian Okhotsk and Paleo-Pacific tectonic domains[1].As a result of re...During the late Paleozoic to early Mesozoic,a tectonic transition occurred in Northeast China,marking a shift from the Paleo-Asian Ocean to the Mongolian Okhotsk and Paleo-Pacific tectonic domains[1].As a result of regional compression induced by oceanic closure and continental collision,stratigraphic records from this period are scarce,but such records are essential for elucidating the tectonic and paleographic evolution of the region during the transition.展开更多
The sharp increase in the demand for lithium(Li)for high-energy-storage battery materials due to its high specific energy and low negative chemical potential render Li a geopolitically significant resource.It is urgen...The sharp increase in the demand for lithium(Li)for high-energy-storage battery materials due to its high specific energy and low negative chemical potential render Li a geopolitically significant resource.It is urgent to develop a low-cost,efficient method to improve lithium extraction.Herein,Li ion(Li+)adsorption in coal-bearing strata kaolinite(CSK)was studied.The effects of pre-activation acid leaching(meta-kaolinite/H2SO4,MK-HS)and dimethyl sulfoxide intercalation(coal-bearing strata kaolinite/dimethyl sulfoxide,CSK-DMSO)on the Li+adsorption capacity were studied under the same adsorption conditions.The results indicated that the adsorption was completed in 60 min under alkaline conditions(pH=8.5),a high solution concentration(400 mg/L),and a low dosage(1 g/100 mL);and the comprehensive adsorption capacity is MK-HS>CSK-DMSO>CSK.Furthermore,the DMSO intercalation caused the interlayer spacing of the CSK to increase,which provided more space for Li+to enter and increase the adsorption capacity.After thermal pre-activation and acid leaching,structural failure and lattice collapse resulted in the presence of more micropores in the MK-HS,which resulted in a 10-fold increase in its specific surface area and caused coordination bond changes(Al(VI)to Al(IV))and leaching of aluminum(Al)from the lattice.It is proposed that these structural changes greatly improve the activity of CSK so that Li+cannot only adsorb onto the surface and between the layers but can also enter the lattice defects,which results in the MK-HS having the best adsorption performance.Combined with the adsorption kinetics analysis,the adsorption methods of CSK and two modified materials include physical adsorption and chemical adsorption.In this study,the adsorption capacity of CSK and its modified products to Li were explored,providing a new option for the reuse of CSK and the extraction of Li.展开更多
Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information...Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information of coal-bearing reservoir on seismic data. Previous researchers have studied the reservoir by stripping or weakening the strong reflection, but it is difficult to determine the effectiveness of the remaining reflection seismic data. In this paper, through the establishment of 2D forward model of coal-bearing strata, the corresponding geophysical characteristics of different reflection types of coal-bearing strata are analyzed, and then the favorable sedimentary facies zones for reservoir development are predicted. On this basis, combined with seismic properties, the coal-bearing reservoir is quantitatively characterized by seismic inversion. The above research shows that the Taiyuan formation in LS block of Ordos Basin is affected by coals and forms three or two peaks in different locations. The reservoir plane sedimentary facies zone is effectively characterized by seismic reflection structure. Based on the characteristics of sedimentary facies belt and petrophysical analysis, the reservoir is semi quantitatively characterized by attribute analysis and waveform indication, and quantitatively characterized by pre stack geostatistical inversion. Based on the forward analysis of coal measure strata, this technology characterizes the reservoir facies belt through seismic reflection characteristics, and describes coal measure reservoirs step by step. It effectively guides the exploration of LS block in Ordos Basin, and has achieved good practical application effect.展开更多
Sea area is an important area of oil and gas exploration in China.It has been found that China's sea area mainly consists of coal type oil and gas,and the exploration of coal-bearing series source rocks has become...Sea area is an important area of oil and gas exploration in China.It has been found that China's sea area mainly consists of coal type oil and gas,and the exploration of coal-bearing series source rocks has become an important part of oil and gas exploration there.Through years of comprehensive geological research in China's sea area,it has been revealed that it has undergone multiple occurrences of tectonic opening and closing movements in varying degrees in the Paleogene,forming 26 Cenozoic sedimentary basins of various types,such as active continental margin,passive continental margin,transitional continental margin and drift rift basins.In the present study,it is observed for the first time that coal type source rocks are mainly developed in 14 continental margin basins in China's sea area,revealing that a very large C-shaped coal-bearing basin group developed there in the Cenozoic.Next,based on the coupling analysis of paleoclimate,paleobotany,paleogeography and paleostructure,it is observed that there are five coal-forming periods in China's sea area,namely the Paleocene,Eocene,early Oligocene,late Oligocene and Miocene-Pliocene,and the coal-forming age is gradually new from north to south.It is also found that the coal seams in the sea area are mainly developed in three coal-forming environments in Cenozoic,namely delta,fan delta and tidal flat-lagoon.The coal seams developed in different environments are characterized by thin thickness,many layers and poor stability.However,the coal-bearing series source rocks in China's sea area have a wide distribution range,very high thickness and large amount,thus forming a material basis for the formation of rich coal type oil and gas.展开更多
Tidal sand ridges are large-scale linear bottom configurations in a good many tidal seas. The modern tidal sand ridges in Jianggang area, the northern part of Jiangsu Province, China, have attracted the attention of g...Tidal sand ridges are large-scale linear bottom configurations in a good many tidal seas. The modern tidal sand ridges in Jianggang area, the northern part of Jiangsu Province, China, have attracted the attention of geological circles because of the radial form and large scale. Berg, Brenner and Davies have reported that linear sand bodies of this kind were recognized within the Mesozoic strata of western America, but we have not seen any reports about the discovery of this kind of sediment from the ancient lithofacies analyses of China, especially in coal-bearing strata. Based on the study of sedimentary facies, this note describes the deposits of tidal sand ridges in the coal-bearing strata of China.展开更多
Considerable progresses in the sedimentologic studies of the anastomosing river models have been made in recent years. There are now many modern and ancient examples such as those described by Smith, Rust et al. Flore...Considerable progresses in the sedimentologic studies of the anastomosing river models have been made in recent years. There are now many modern and ancient examples such as those described by Smith, Rust et al. Flores et al. But all examples are found in the alluvial plains and the intermontane basins. None is known reporting about the upper delta plain environment. However, this type of distributary channels展开更多
1.Objective In the past decade,a group of medium to giant lead-zinc deposits,represented by Huoshaoyun,Sachakou,and Yuanbaoling,have been discovered in the Aksai Chin region of Karakoram,Xinjiang.They are all located ...1.Objective In the past decade,a group of medium to giant lead-zinc deposits,represented by Huoshaoyun,Sachakou,and Yuanbaoling,have been discovered in the Aksai Chin region of Karakoram,Xinjiang.They are all located in the Mesozoic carbonate and clastic rock formations.The Sachakou leadzinc mining area is adjacent to the northwest of the Huoshaoyun lead-zinc mining area and is in the same stratigraphic layer as Huoshaoyun.Although many scholars have been arguing about the type and age of Huoshaoyun lead-zinc mineralization,few scholars have paid attention to the classification of the ore-bearing strata in the area.The stratigraphy of the Lower Permian Shenxianwan Group to the Upper Cretaceous Tielongtan Group is exposed in the Sachakou area of Karakorum,Xinjiang,however,the Late Permian-Early Triassic stratigraphy is missing(Fig.1a).Due to the harsh natural conditions in the area and the low level of work,the stratigraphic delineation is not exhaustive,and the regional lithology is dominated by carbonates and clastic rocks,which makes it difficult to identify the age of the regional lithology and causes problems for the exploration and research of lead-zinc in the area.展开更多
In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confine...In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.展开更多
The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challe...The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways.展开更多
The types,occurrence and composition of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata of the first member of the Middle Permian Maokou Formation(Mao-1 Member)in eastern Sichuan Basin w...The types,occurrence and composition of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata of the first member of the Middle Permian Maokou Formation(Mao-1 Member)in eastern Sichuan Basin were investigated through outcrop section measurement,core observation,thin section identification,argon ion polishing,X-ray diffraction,scanning electron microscope,energy spectrum analysis and laser ablation-inductively coupled plasma-mass spectrometry.The diagenetic evolution sequence of clay minerals was clarified,and the sedimentary-diagenetic evolution model of clay minerals was established.The results show that authigenic sepiolite minerals were precipitated in the Si4+and Mg2+-rich cool aragonite sea and sepiolite-bearing strata were formed in the Mao-1 Member.During burial diagenesis,authigenic clay minerals undergo two possible evolution sequences.First,from the early diagenetic stage A to the middle diagenetic stage A1,the sepiolite kept stable in the shallow-buried environment lack of Al3+.It began to transform into stevensite in the middle diagenetic stage A2,and then evolved into disordered talc in the middle diagenetic stage B1and finally into talc in the period from the middle diagenetic stage B2to the late diagenetic stage.Thus,the primary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-stevensite-disordered talc-talc,was formed in the Mao-1 Member.Second,in the early diagenetic stage A,as Al3+carried by the storm and upwelling currents was involved in the diagenetic process,trace of sepiolite started to evolve into smectite,and a part of smectite turned into chlorite.From the early diagenetic stage B to the middle diagenesis stage A1,a part of smectite evolved to illite/smectite mixed layer(I/S).The I/S evolved initially into illite from the middle diagenesis stage A2to the middle diagenesis stage B2,and then totally into illite in the late diagenesis stage.Thus,the secondary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-smectite-chlorite/illite,was formed in the Mao-1 Member.The types and evolution of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata are significant for petroleum geology in two aspects.First,sepiolite can adsorb and accumulate a large amount of organic matters,thereby effectively improving the quality and hydrocarbon generation potential of the source rocks of the Mao-1 Member.Second,the evolution from sepiolite to talc is accompanied by the formation of numerous organic matter pores and clay shrinkage pores/fractures,as well as the releasing of the Mg2+-rich diagenetic fluid,which allows for the dolomitization of limestone within or around the sag.As a result,the new assemblages of self-generation and self-accumulation,and lower/side source and upper/lateral reservoir,are created in the Middle Permian,enhancing the hydrocarbon accumulation efficiency.展开更多
This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this constructionmethod impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of ...This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this constructionmethod impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of tunnelsegments. It investigates the impact of shield construction on surface settlement, mechanical characteristics ofnearby rock, and segment deformation in complex coastal strata susceptible to construction disturbances. Utilizingthe Fuzhou Binhai express line as a case study, we developed a comprehensive numerical model using theABAQUS finite element software. The model incorporates factors such as face force, grouting pressure, jack force,and cutterhead torque. Its accuracy is validated against field monitoring data from engineering projects. Simulationswere conducted to analyze ground settlement and mechanical changes in adjacent rock and segments acrossfive soil layers. The results indicate that disturbances are most significant near the excavation zone of the shieldmachine, with a prominent settlement trough forming and stabilizing around 2.0–3.0 D from the excavation. Theexcavation face compresses the soil, inducing lateral expansion. As grouting pressure decreases, the segmentexperiences upward buoyancy. In mixed strata, softer layers witness increased cutting, intensifying disturbancesbut reducing segment floatation. These findings offer valuable insights for predicting settlements, ensuring segmentand rock safety, and optimizing tunneling parameters.展开更多
Aiming at the problem that the data-driven automatic correlation methods which are difficult to adapt to the automatic correlation of oil-bearing strata with large changes in lateral sedimentary facies and strata thic...Aiming at the problem that the data-driven automatic correlation methods which are difficult to adapt to the automatic correlation of oil-bearing strata with large changes in lateral sedimentary facies and strata thickness,an intelligent automatic correlation method of oil-bearing strata based on pattern constraints is formed.We propose to introduce knowledge-driven in automatic correlation of oil-bearing strata,constraining the correlation process by stratigraphic sedimentary patterns and improving the similarity measuring machine and conditional constraint dynamic time warping algorithm to automate the correlation of marker layers and the interfaces of each stratum.The application in Shishen 100 block in the Shinan Oilfield of the Bohai Bay Basin shows that the coincidence rate of the marker layers identified by this method is over 95.00%,and the average coincidence rate of identified oil-bearing strata reaches 90.02% compared to artificial correlation results,which is about 17 percentage points higher than that of the existing automatic correlation methods.The accuracy of the automatic correlation of oil-bearing strata has been effectively improved.展开更多
Coal-bearing source rocks of the Pinghu Formation in the Xihu Depression comprise an important material basis of oil and gas resources in the East China Sea Basin.Based on drilling core observation results combined wi...Coal-bearing source rocks of the Pinghu Formation in the Xihu Depression comprise an important material basis of oil and gas resources in the East China Sea Basin.Based on drilling core observation results combined with the analysis and test results of macerals,trace/rare earth elements,and rock pyrolysis,the geochemical characteristics and sedimentary control of coal-bearing source rocks formation are discussed in a high-frequency sequence framework.The results indicate that the macerals composition of the coal-bearing source rocks of the Eocene Pinghu Formation in the Xihu Depression is dominated by vitrinite,with low-medium abundance of exinite and almost no inertinite.The coals and carbonaceous mudstones display higher amounts of total organic carbon(TOC)(14.90%-65.10%),S1+S2(39.24-136.52 mg/g),and IH(191-310 HC/g TOC)respectively,as compared to the mudstones.Organic matter is plotted in typeⅢkerogens and partially in typeⅡ;it is mainly in the low maturity stage.The trace elements results imply that the samples were deposited in a weakly reducing to weakly oxidizing environment and were occasionally affected by seawater.The coal-bearing source rocks were deposited in a relatively oxygen-containing environment.The coal-bearing source rocks development is jointly controlled by the coal accumulation environment,the water conditions affected by ocean currents in offshore basins in China,oxidation-reduction cycles of aqueous media and paleoclimate evolution in a high-frequency sequence framework.展开更多
The uranium deposits in the Tuanyushan area of northern Qaidam Basin commonly occur in coal-bearing series. To decipher the U-enrichment mechanism and controlling factors in this area, a database of 72 drill cores, in...The uranium deposits in the Tuanyushan area of northern Qaidam Basin commonly occur in coal-bearing series. To decipher the U-enrichment mechanism and controlling factors in this area, a database of 72 drill cores, including 56 well-logs and 3 sampling wells, was examined for sedimentology and geochemistry in relation to uranium concentrations. The results show that coal-bearing series can influence uranium mineralization from two aspects, i.e., spatial distribution and dynamic control. Five types of uranium-bearing rocks are recognized, mainly occurring in the braided river and braided delta sedimentary facies, among which sandstones near the coals are the most important. The lithological associations of sandstone-type uranium deposits can be classified into three subtypes, termed as U-coal type, coal-U-coal type, and coal-U type, respectively. The coal and fine siliciclastic rocks in the coal- bearing series confined the U-rich fluid flow and uranium accumulation in the sandstone near them. Thus, the coal-bearing series can provide good accommodations for uranium mineralization. Coals and organic matters in the coal-bearing series may have served as reducing agents and absorbing barriers. Methane is deemed to be the main acidolysis hydrocarbon in the U-bearing beds, which shows a positive correlation with U-content in the sandstones in the coal-bearing series. Additionally, the 613C in the carbonate cements of the U-bearing sandstones indicates that the organic matters, associated with the coal around the sandstones, were involved in the carbonation, one important component of alteration in the Tuanyushan area. Recognition of the dual control of coal-bearing series on the uranium mineralization is significant for the development of coal circular economy, environmental protection during coal utilization and the security of national rare metal resources.展开更多
基金founded by the National Natural Science Foundation of China(Grant No.41772130)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_2602)+1 种基金the Graduate Innovation Program of China University of Mining and Technology(Grant No.2022WLKXJ035)the Fundamental Research Program of Shanxi Province(Grant No.202103021223283)。
文摘The continuously collected cores from the Permo-Carboniferous coal-bearing strata of the eastern Ordos Basin are essential for studying the hydrocarbon potential in this region.This study adopted sedimentological and geochemical methods to analyze the sedimentary environment,material composition,and geochemical characteristics of the coal-bearing strata.The differences in depositional and paleoclimatic conditions were compared;and the factors influencing the organic matter content of fine-grained sediments were explored.The depositional environment of the Benxi and Jinci formations was lagoon to tidal flat with weakly reduced waters with low salinity and dry-hot paleoclimatic conditions;while that of the Taiyuan Formation was a carbonate platform and shallow water delta front,where the water was highly reductive.The xerothermic climate alternated with the warm and humid climate.The period of maximum transgression in the Permo-Carboniferous has the highest water salinity.The Shanxi Formation was deposited in a shallow water delta front with a brackish and fresh water environment and alternative weak reductiveness.And the paleoclimate condition is dry-hot.The TOC content in fine-grained samples was averaging 1.52%.The main controlling mechanism of organic matter in this area was the input conditions according to the analysis on input and preservation of organic matter.
基金supported by the National Natural Science Foundation of China
文摘The Longtan Formation was originally thought to belong to the Late Permian, but this study reveals that the lower part of this formation belongs to the Middle Permian. The study proposes the corresponding chro-nostratigraphic boundary and new schemes for the correlation of geological sections. Based on these schemes a new understanding on the accumulation regularity of Permian coal measures in South China is reached.
基金supported by the National Natural Science Foundation of China (No. 40672103)
文摘The Zhangwu-Heishan area is located to the east of the Fuxin-Yixian Basin and is mostly covered with volcanic rock. At various periods, different geologists had varying opinions about their age and periods of volcanic eruptions, especially on sequences between volcanic rock and main coal-bearing strata, which affect the direction of searching for coal, as well as prospecting the entire research area. During our study, we carried out detailed field investigations in this research area: observed and recorded the main representative outcrops of volcanic rock. We collected over 20 volcanic rock samples and tested the Sensitive High Resolution Ion Microprobe II (SHRIMP If) U-Pb isotope age of 11 samples. The age of our volcanic rock samples ranged between 56.0 ± 2.9 and 132.3 ± 2.3 Ma. After taking earlier investigations into consideration, we concluded that, except for a suite of paleogene olivine basalt, the volcanic rock in the Zhangwu-Heishan area is younger than the coal-bearing Shahai Formation. It is therefore most unlikely to find coal seams equivalent to those of the early Cretaceous Shahai Formation in Fuxin Basin below vol- canic rock.
基金supported by the National Natural Science Foundation of China(42102129 and 41790453).
文摘During the late Paleozoic to early Mesozoic,a tectonic transition occurred in Northeast China,marking a shift from the Paleo-Asian Ocean to the Mongolian Okhotsk and Paleo-Pacific tectonic domains[1].As a result of regional compression induced by oceanic closure and continental collision,stratigraphic records from this period are scarce,but such records are essential for elucidating the tectonic and paleographic evolution of the region during the transition.
基金The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China(Grant No.42172043)the Science and Technology Major Projects of Shanxi Province of China(No.20181101003)+1 种基金the Fundamental Research Funds for the Central Universities(No.300102299306)Scientific Innovation Practive Project of Postgraduates of Chang’an University(No.300103722045)。
文摘The sharp increase in the demand for lithium(Li)for high-energy-storage battery materials due to its high specific energy and low negative chemical potential render Li a geopolitically significant resource.It is urgent to develop a low-cost,efficient method to improve lithium extraction.Herein,Li ion(Li+)adsorption in coal-bearing strata kaolinite(CSK)was studied.The effects of pre-activation acid leaching(meta-kaolinite/H2SO4,MK-HS)and dimethyl sulfoxide intercalation(coal-bearing strata kaolinite/dimethyl sulfoxide,CSK-DMSO)on the Li+adsorption capacity were studied under the same adsorption conditions.The results indicated that the adsorption was completed in 60 min under alkaline conditions(pH=8.5),a high solution concentration(400 mg/L),and a low dosage(1 g/100 mL);and the comprehensive adsorption capacity is MK-HS>CSK-DMSO>CSK.Furthermore,the DMSO intercalation caused the interlayer spacing of the CSK to increase,which provided more space for Li+to enter and increase the adsorption capacity.After thermal pre-activation and acid leaching,structural failure and lattice collapse resulted in the presence of more micropores in the MK-HS,which resulted in a 10-fold increase in its specific surface area and caused coordination bond changes(Al(VI)to Al(IV))and leaching of aluminum(Al)from the lattice.It is proposed that these structural changes greatly improve the activity of CSK so that Li+cannot only adsorb onto the surface and between the layers but can also enter the lattice defects,which results in the MK-HS having the best adsorption performance.Combined with the adsorption kinetics analysis,the adsorption methods of CSK and two modified materials include physical adsorption and chemical adsorption.In this study,the adsorption capacity of CSK and its modified products to Li were explored,providing a new option for the reuse of CSK and the extraction of Li.
文摘Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information of coal-bearing reservoir on seismic data. Previous researchers have studied the reservoir by stripping or weakening the strong reflection, but it is difficult to determine the effectiveness of the remaining reflection seismic data. In this paper, through the establishment of 2D forward model of coal-bearing strata, the corresponding geophysical characteristics of different reflection types of coal-bearing strata are analyzed, and then the favorable sedimentary facies zones for reservoir development are predicted. On this basis, combined with seismic properties, the coal-bearing reservoir is quantitatively characterized by seismic inversion. The above research shows that the Taiyuan formation in LS block of Ordos Basin is affected by coals and forms three or two peaks in different locations. The reservoir plane sedimentary facies zone is effectively characterized by seismic reflection structure. Based on the characteristics of sedimentary facies belt and petrophysical analysis, the reservoir is semi quantitatively characterized by attribute analysis and waveform indication, and quantitatively characterized by pre stack geostatistical inversion. Based on the forward analysis of coal measure strata, this technology characterizes the reservoir facies belt through seismic reflection characteristics, and describes coal measure reservoirs step by step. It effectively guides the exploration of LS block in Ordos Basin, and has achieved good practical application effect.
基金The Ministry of Land and Resources Project of Oil and Gas Resource Investigation and Evaluation under contract Nos XQ-2004-05 and XQ-2007-05the National Key Basic Research Program of China(973 Program)under contract No.2009CB219400+3 种基金the National Science and Technology Major Project under contract Nos 2008ZX05025,2011ZX05025 and2016ZX05026the National Natural Science Foundation under contract Nos 41872172 and 42072188the Research and Innovation Team Support Program of Shandong University of Science and Technology under contract No.2018TDJH101Hebei Provincial Resources Survey and Research Laboratory Open Foundation。
文摘Sea area is an important area of oil and gas exploration in China.It has been found that China's sea area mainly consists of coal type oil and gas,and the exploration of coal-bearing series source rocks has become an important part of oil and gas exploration there.Through years of comprehensive geological research in China's sea area,it has been revealed that it has undergone multiple occurrences of tectonic opening and closing movements in varying degrees in the Paleogene,forming 26 Cenozoic sedimentary basins of various types,such as active continental margin,passive continental margin,transitional continental margin and drift rift basins.In the present study,it is observed for the first time that coal type source rocks are mainly developed in 14 continental margin basins in China's sea area,revealing that a very large C-shaped coal-bearing basin group developed there in the Cenozoic.Next,based on the coupling analysis of paleoclimate,paleobotany,paleogeography and paleostructure,it is observed that there are five coal-forming periods in China's sea area,namely the Paleocene,Eocene,early Oligocene,late Oligocene and Miocene-Pliocene,and the coal-forming age is gradually new from north to south.It is also found that the coal seams in the sea area are mainly developed in three coal-forming environments in Cenozoic,namely delta,fan delta and tidal flat-lagoon.The coal seams developed in different environments are characterized by thin thickness,many layers and poor stability.However,the coal-bearing series source rocks in China's sea area have a wide distribution range,very high thickness and large amount,thus forming a material basis for the formation of rich coal type oil and gas.
文摘Tidal sand ridges are large-scale linear bottom configurations in a good many tidal seas. The modern tidal sand ridges in Jianggang area, the northern part of Jiangsu Province, China, have attracted the attention of geological circles because of the radial form and large scale. Berg, Brenner and Davies have reported that linear sand bodies of this kind were recognized within the Mesozoic strata of western America, but we have not seen any reports about the discovery of this kind of sediment from the ancient lithofacies analyses of China, especially in coal-bearing strata. Based on the study of sedimentary facies, this note describes the deposits of tidal sand ridges in the coal-bearing strata of China.
文摘Considerable progresses in the sedimentologic studies of the anastomosing river models have been made in recent years. There are now many modern and ancient examples such as those described by Smith, Rust et al. Flores et al. But all examples are found in the alluvial plains and the intermontane basins. None is known reporting about the upper delta plain environment. However, this type of distributary channels
基金Supported by the Second Tibetan Plateau Scientific Expedition and Research(2021QZKK0303)the Natural Science Basic Research Program of Shaanxi(2020JQ-440 and 2021JQ-327)+1 种基金the Major Science and Technology Project of Xinjiang Uygur Autonomous Region(2021A03001-2)the projects of the China Geological Survey(DD20230333 and DD20230048).
文摘1.Objective In the past decade,a group of medium to giant lead-zinc deposits,represented by Huoshaoyun,Sachakou,and Yuanbaoling,have been discovered in the Aksai Chin region of Karakoram,Xinjiang.They are all located in the Mesozoic carbonate and clastic rock formations.The Sachakou leadzinc mining area is adjacent to the northwest of the Huoshaoyun lead-zinc mining area and is in the same stratigraphic layer as Huoshaoyun.Although many scholars have been arguing about the type and age of Huoshaoyun lead-zinc mineralization,few scholars have paid attention to the classification of the ore-bearing strata in the area.The stratigraphy of the Lower Permian Shenxianwan Group to the Upper Cretaceous Tielongtan Group is exposed in the Sachakou area of Karakorum,Xinjiang,however,the Late Permian-Early Triassic stratigraphy is missing(Fig.1a).Due to the harsh natural conditions in the area and the low level of work,the stratigraphic delineation is not exhaustive,and the regional lithology is dominated by carbonates and clastic rocks,which makes it difficult to identify the age of the regional lithology and causes problems for the exploration and research of lead-zinc in the area.
基金Project(ZDRW-ZS-2021-3)supported by the Key Deployment Projects of Chinese Academy of SciencesProjects(52179116,51991392)supported by the National Natural Science Foundation of China。
文摘In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.
基金supported by the National Natural Science Foundation of China(Grant No.51874311,52174096)。
文摘The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways.
基金Supported by the Enterprise Innovation and Development Joint Fund of National Natural Science Foundation of China(U19B6003)National Natural Science Foundation of China(41872150)。
文摘The types,occurrence and composition of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata of the first member of the Middle Permian Maokou Formation(Mao-1 Member)in eastern Sichuan Basin were investigated through outcrop section measurement,core observation,thin section identification,argon ion polishing,X-ray diffraction,scanning electron microscope,energy spectrum analysis and laser ablation-inductively coupled plasma-mass spectrometry.The diagenetic evolution sequence of clay minerals was clarified,and the sedimentary-diagenetic evolution model of clay minerals was established.The results show that authigenic sepiolite minerals were precipitated in the Si4+and Mg2+-rich cool aragonite sea and sepiolite-bearing strata were formed in the Mao-1 Member.During burial diagenesis,authigenic clay minerals undergo two possible evolution sequences.First,from the early diagenetic stage A to the middle diagenetic stage A1,the sepiolite kept stable in the shallow-buried environment lack of Al3+.It began to transform into stevensite in the middle diagenetic stage A2,and then evolved into disordered talc in the middle diagenetic stage B1and finally into talc in the period from the middle diagenetic stage B2to the late diagenetic stage.Thus,the primary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-stevensite-disordered talc-talc,was formed in the Mao-1 Member.Second,in the early diagenetic stage A,as Al3+carried by the storm and upwelling currents was involved in the diagenetic process,trace of sepiolite started to evolve into smectite,and a part of smectite turned into chlorite.From the early diagenetic stage B to the middle diagenesis stage A1,a part of smectite evolved to illite/smectite mixed layer(I/S).The I/S evolved initially into illite from the middle diagenesis stage A2to the middle diagenesis stage B2,and then totally into illite in the late diagenesis stage.Thus,the secondary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-smectite-chlorite/illite,was formed in the Mao-1 Member.The types and evolution of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata are significant for petroleum geology in two aspects.First,sepiolite can adsorb and accumulate a large amount of organic matters,thereby effectively improving the quality and hydrocarbon generation potential of the source rocks of the Mao-1 Member.Second,the evolution from sepiolite to talc is accompanied by the formation of numerous organic matter pores and clay shrinkage pores/fractures,as well as the releasing of the Mg2+-rich diagenetic fluid,which allows for the dolomitization of limestone within or around the sag.As a result,the new assemblages of self-generation and self-accumulation,and lower/side source and upper/lateral reservoir,are created in the Middle Permian,enhancing the hydrocarbon accumulation efficiency.
文摘This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this constructionmethod impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of tunnelsegments. It investigates the impact of shield construction on surface settlement, mechanical characteristics ofnearby rock, and segment deformation in complex coastal strata susceptible to construction disturbances. Utilizingthe Fuzhou Binhai express line as a case study, we developed a comprehensive numerical model using theABAQUS finite element software. The model incorporates factors such as face force, grouting pressure, jack force,and cutterhead torque. Its accuracy is validated against field monitoring data from engineering projects. Simulationswere conducted to analyze ground settlement and mechanical changes in adjacent rock and segments acrossfive soil layers. The results indicate that disturbances are most significant near the excavation zone of the shieldmachine, with a prominent settlement trough forming and stabilizing around 2.0–3.0 D from the excavation. Theexcavation face compresses the soil, inducing lateral expansion. As grouting pressure decreases, the segmentexperiences upward buoyancy. In mixed strata, softer layers witness increased cutting, intensifying disturbancesbut reducing segment floatation. These findings offer valuable insights for predicting settlements, ensuring segmentand rock safety, and optimizing tunneling parameters.
基金Supported by the National Natural Science Foundation of China(42272110)CNPC-China University of Petroleum(Beijing)Strategic Cooperation Project(ZLZX2020-02).
文摘Aiming at the problem that the data-driven automatic correlation methods which are difficult to adapt to the automatic correlation of oil-bearing strata with large changes in lateral sedimentary facies and strata thickness,an intelligent automatic correlation method of oil-bearing strata based on pattern constraints is formed.We propose to introduce knowledge-driven in automatic correlation of oil-bearing strata,constraining the correlation process by stratigraphic sedimentary patterns and improving the similarity measuring machine and conditional constraint dynamic time warping algorithm to automate the correlation of marker layers and the interfaces of each stratum.The application in Shishen 100 block in the Shinan Oilfield of the Bohai Bay Basin shows that the coincidence rate of the marker layers identified by this method is over 95.00%,and the average coincidence rate of identified oil-bearing strata reaches 90.02% compared to artificial correlation results,which is about 17 percentage points higher than that of the existing automatic correlation methods.The accuracy of the automatic correlation of oil-bearing strata has been effectively improved.
基金Financial support for this work was provided by the National Key Research Program for Science and Technology of China(No.2011ZX05023-001-008)the Priority Academic Program Development of the Jiangsu Higher Education Institutions(PAPD)。
文摘Coal-bearing source rocks of the Pinghu Formation in the Xihu Depression comprise an important material basis of oil and gas resources in the East China Sea Basin.Based on drilling core observation results combined with the analysis and test results of macerals,trace/rare earth elements,and rock pyrolysis,the geochemical characteristics and sedimentary control of coal-bearing source rocks formation are discussed in a high-frequency sequence framework.The results indicate that the macerals composition of the coal-bearing source rocks of the Eocene Pinghu Formation in the Xihu Depression is dominated by vitrinite,with low-medium abundance of exinite and almost no inertinite.The coals and carbonaceous mudstones display higher amounts of total organic carbon(TOC)(14.90%-65.10%),S1+S2(39.24-136.52 mg/g),and IH(191-310 HC/g TOC)respectively,as compared to the mudstones.Organic matter is plotted in typeⅢkerogens and partially in typeⅡ;it is mainly in the low maturity stage.The trace elements results imply that the samples were deposited in a weakly reducing to weakly oxidizing environment and were occasionally affected by seawater.The coal-bearing source rocks were deposited in a relatively oxygen-containing environment.The coal-bearing source rocks development is jointly controlled by the coal accumulation environment,the water conditions affected by ocean currents in offshore basins in China,oxidation-reduction cycles of aqueous media and paleoclimate evolution in a high-frequency sequence framework.
基金supported by the Major National Science and Technology Program of China (grants No. 2016ZX05041004)the National Natural Science Foundation of China (grant No. 41572090)High-level Talent Recruitment Project of North China University of Water Resource and Electric (grant No. 40481)
文摘The uranium deposits in the Tuanyushan area of northern Qaidam Basin commonly occur in coal-bearing series. To decipher the U-enrichment mechanism and controlling factors in this area, a database of 72 drill cores, including 56 well-logs and 3 sampling wells, was examined for sedimentology and geochemistry in relation to uranium concentrations. The results show that coal-bearing series can influence uranium mineralization from two aspects, i.e., spatial distribution and dynamic control. Five types of uranium-bearing rocks are recognized, mainly occurring in the braided river and braided delta sedimentary facies, among which sandstones near the coals are the most important. The lithological associations of sandstone-type uranium deposits can be classified into three subtypes, termed as U-coal type, coal-U-coal type, and coal-U type, respectively. The coal and fine siliciclastic rocks in the coal- bearing series confined the U-rich fluid flow and uranium accumulation in the sandstone near them. Thus, the coal-bearing series can provide good accommodations for uranium mineralization. Coals and organic matters in the coal-bearing series may have served as reducing agents and absorbing barriers. Methane is deemed to be the main acidolysis hydrocarbon in the U-bearing beds, which shows a positive correlation with U-content in the sandstones in the coal-bearing series. Additionally, the 613C in the carbonate cements of the U-bearing sandstones indicates that the organic matters, associated with the coal around the sandstones, were involved in the carbonation, one important component of alteration in the Tuanyushan area. Recognition of the dual control of coal-bearing series on the uranium mineralization is significant for the development of coal circular economy, environmental protection during coal utilization and the security of national rare metal resources.