To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put fo...To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate.展开更多
To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fract...To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fracture surface) of aggregate particles, is represented by polyhedral particles based on the discrete element method( DEM). A digital specimen comprised of aggregates and air voids is developed. In addition,a static compaction model consisting of a digital specimen and three plates is constructed and a series of evaluation indices such as mean contact force σMCF, wall stress in direction of zcoordinate σWSZZ, porosity and coordination numbers are presented to investigate the motion rules of coarse aggregates at different compaction displacements of 7. 5, 15 and 30 mm. The three-dimensional static compaction model is also verified with laboratory measurements. The results indicate that the compaction displacements are positively related to σMCF and σWSZZ, which increase gradually with the increase in iterative steps. When the compaction proceeds, the digital specimen porosity decreases, but the coordination number increases. The variation ranges of these four indices are different at different compaction displacements. This study provides a method to analyze the compaction mechanism of particle materials such as asphalt mixture and graded broken stone.展开更多
Coarse aggregates are the major infrastructure materials of concrete-faced rock-fill dams and are consolidated to bear upper and lateral loads. With the increase of dam height, high confining pressure and complex stre...Coarse aggregates are the major infrastructure materials of concrete-faced rock-fill dams and are consolidated to bear upper and lateral loads. With the increase of dam height, high confining pressure and complex stress states complicate the shear behavfor of coarse aggregates, and thus impede the high dam's proper construction, operation and maintenance. An experimental program was conducted to study the shear behavior of dam coarse aggregates using a large-scale triaxial shear apparatus. Through triaxial shear tests, the strain-stress behaviors of aggregates were observed under constant confining pressures: 300 kPa, 600 kPa 900 kPa and 1200 kPa. Shear strengths and aggregate breakage characteristics associated with high pressure shear processes are discussed. Stress path tests were conducted to observe and analyze coarse aggregate response under complex stress states. In triaxial shear tests, it was found that peak deviator stresses increase along with confining pressures, whereas the peak principal stress ratios decrease as confining pressures increase With increasing confining pressures, the dilation decreases and the contraction eventually prevails. Initial strength parameters (Poisson's ratio and tangent modulus) show a nonlinear relationship with confining pressures when the pressures are relatively low. Shear strength parameters decrease with increasing confining pressures. The failure envelope lines are convex curves, with clear curvature under low confining pressures. Under moderate confining pressures, dilation is offset by particle breakage. Under high confining pressures, dilation disappears.展开更多
In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and ...In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and slice images were obtained by X-ray CT, then the aggregates were extracted by the fuzzy c-means clustering algorithm. Attributions of the particle on different cross-sections were determined by the ‘overlap area method’. And unified three-dimensional Cartesian coordinate system was established based on continuous slice images. The coefficient values of spherical harmonics descriptor representing particles surface profile were gained, then each scanned particle was represented by 60×120 discrete points conformably with spherical harmonics descriptor. The chord length and direction angles were determined by the calculation. With the major axis (L) and orthogonal axis (W and T), the calculated results were compared with those measured by caliper. It is concluded that the new L, W, and T dimension measuring method is able to take the place of the present manual measurement.展开更多
Chloride attack on concrete structures is affected by the complex stress state inside concrete,and the effect of recycled aggregates renders this process more complex.Enhancing the chloride resistance of recycled conc...Chloride attack on concrete structures is affected by the complex stress state inside concrete,and the effect of recycled aggregates renders this process more complex.Enhancing the chloride resistance of recycled concrete in a complex environment via carbonization facilitates the popularization and application of recycled concrete and alleviates the greenhouse effect.In this study,the chloride ion diffusion and deformation properties of recycled concrete after carbonization are investigated using a chloride salt load-coupling device.The results obtained demonstrate that the chloride ion diffusivity of recycled concrete first decreases and then increases as the compressive load increases,which is consistent with the behavior of concrete,in that it first undergoes compressive deformation,followed by crack propagation.Carbonation enhances the performance of the recycled aggregates and reduces their porosity,thereby reducing the chloride diffusion coefficient of the recycled concrete under different compressive load combinations.The variation in the chloride ion diffusivity of the carbonized recycled aggregate concrete with the load is consistent with a theoretical formula.展开更多
A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with ...A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with different gradations.The fluidity,dynamic yield stress,static yield stress,printed width,printed inclination,compressive strength and ultrasonic wave velocity of 3D printed recycled aggregate concrete(3DPRAC)were further studied.The experimental results demonstrate that,with the increase of small-sized aggregate(4.75-7 mm)content,the bulk density initially increases and then decreases,and the specific surface area gradually increases.The average excess paste thickness fluctuates with both bulk density and specific surface area.The workability of 3DPRAC is closely related to the average excess paste thickness.With an increase in average paste thickness,there is a gradual decrease in dynamic yield stress,static yield stress and printed inclination,accompanied by an increase in fluidity and printed width.The mechanical performance of 3DPRAC closely correlates with the bulk density.With an increase in the bulk density,there is an increase in the ultrasonic wave velocity,accompanied by a slight increase in the compressive strength and a significant decrease in the anisotropic coefficient.Furthermore,an index for buildability failure of 3DPRAC based on the average excess paste thickness is proposed.展开更多
With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environmen...With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environments is still a complex problem.This paper discusses the durability and recyclability of recycled aggregate concrete(RAC)as a prefabricated material in the harsh environment,the effect of high-temperature curing(60℃,80℃,and 100℃)on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate(RCA_(2))of RAC after 300 freeze-thaw cycles were studied.The frost resistance of RAC was characterized by compressive strength,relative dynamic elastic modulus,and mass loss.As the physical properties of RCA_(2),the apparent density,water absorption,and crushing value were measured.And the SEM images of RAC after 300 freeze-thaw cycles were shown.The results indicated that the frost resistance of RAC cured at 80℃ for 7 days was comparable to that cured in the standard condition(cured for 28 days at 20℃±2℃ and 95%humidity),and the RAC cured at 100℃ was slightly worse.However,the frost resistance of RAC cured at 60℃ deteriorated seriously.The RAC cured at 80℃ for 7 days is the best.Whether after the freeze-thaw cycle or not,the RCA that curd at 60℃,80℃,and 100℃ for 7 days can also meet the requirements of Grade III RCA and be used as the aggregate of non-bearing part of prefabricated concrete components.RCA_(2) which is cured at 80℃ for 7 days had the best physical properties.展开更多
Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and ...Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and environmental friendly characteristics.This study examines the key influencing factors that affect the behavior of this material,such as the steel fiber volume ratio,recycled aggregate replacement rate,concrete strength grade,anchorage length,and stirrup constraint.The study investigates the bond failure morphology,bond-slip,and bond strength constitutive relationship of steel fiber recycled concrete.The results show that the addition of steel fibers at 0.5%,1.0%,and 1.5%volume ratios can improve the ultimate bond strength of pull-out specimens by 9.05%,6.94%,and 5.52%,respectively.The replacement rate of recycled aggregate has minimal effect on the typical bond strength of pull-out specimens.However,the ultimate bond strengths of pull-out specimens with concrete strength grades C45 and C60 have improved compared to those with C30 grade.The specimens with longer anchorage lengths exhibit lower ultimate bond strength,with a reduction of 33.19%and 46.37%for anchorage lengths of 5D and 7D,respectively,compared to those without stirrups.Stirrup restraint of 1φ8 and 2φ8 improves the ultimate bond strength by 5.29%and 6.90%,respectively.Steel fibers have a significant effect on the behavior of concrete after it cracks,especially during the stable expansion stage,crack instability expansion stage,and failure stage.展开更多
The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio...The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.展开更多
To model the concrete with complex internal structure of concrete with large sized aggregates the effect of internal structure on uniaxial compression behavior are studied.Large-sized recycled aggregates behave differ...To model the concrete with complex internal structure of concrete with large sized aggregates the effect of internal structure on uniaxial compression behavior are studied.Large-sized recycled aggregates behave differently in the concrete matrix.To understand the influence on concrete matrix,a finite element model was developed to model recycled aggregate concrete composed of multiple randomly distributed irregular aggregates and cement mortar.The model was used to calculate the effect of large-size recycled coarse aggregate(LRCA)on the strength of recycled aggregate concrete and simulate the compressive strength of cubes and prisms.The factors such as the strength of new concrete,the strength of old concrete,the defective element content,the shape of LRCA,the incorporation ratio of LRCA and the size of LRCA that can affect the strength of concrete are analyzed in this paper.Results showed that the influence of various factors on concrete strength are in the following desend-ing order:(i)strength of newly poured concrete;(ii)original strength of recycled aggregates;and(iii)defects.It can be seen that the cracking of the phase material elements starts along the bonding zones between gravel and mortar or the new and old mortar,then spreads to mortar and finally to LRCA.The cracking tendency is most significant in LRCA,which means that the fracturing is related to the fracture of the LRCA.After evaluating the variations in strength and quality of the recycled concrete,the influences on concrete strength and quality were studied.The results showed that the proposed concrete model with LRCA was successfully applied to studying the uniaxial compressive behavior of concrete with large-size recycled coarse aggregate.展开更多
Natural stone aggregate forms the bulk volume of concrete and has contributed to the increased cost of concrete production. This has led to the search for alternate aggregates such as lateritic stone for concrete prod...Natural stone aggregate forms the bulk volume of concrete and has contributed to the increased cost of concrete production. This has led to the search for alternate aggregates such as lateritic stone for concrete production. This paper investigates the engineering properties of concrete produced with lateritic aggregate (LA) as the coarse aggregate replacement and coconut husk fibre (CHF) as reinforcement. Natural stone aggregate was replaced by LA at 0%, 10%, 20%, 30%, 40%, and 50%, with 0.25% constant CHF by weight. A mix proportion of 1:1.5:3 with a water-cement ratio of 0.6 was used for producing concrete. A total of 162 specimens (90 cubes and 72 beams) were prepared and tested at the 7, 14, 21, and 28 days of curing. The highest compressive strength was 43.36 N/mm2 (10% LA replacement) as compared to the control of 41.51 N/mm2. The 10% LA replacement obtained the highest flexural strength of 5.35 N/mm2 as compared with the 5.29 N/mm2 for the control. The water absorption of the concrete increased from 2.8% (control) to 3.57% (50% replacement LA). Scanning electron microscopy (SEM) revealed micro gaps between CHF and LA concrete. The study, therefore, concludes that the use of LA and CHF positively influenced the strength properties of concrete. 10% LA replacement of coarse aggregate and 0.25% CHF is recommended to practitioners for use.展开更多
The influence of coarse aggregate content on concrete properties was investigated.From the perspective of Frame Concrete Theory,six groups concrete were produced with the same proportion except for coarse aggregate co...The influence of coarse aggregate content on concrete properties was investigated.From the perspective of Frame Concrete Theory,six groups concrete were produced with the same proportion except for coarse aggregate content,with coarse aggregate content of 0%,40%,50%,60%,75%,and 80%,respectively.Slump,compressive and flexural tensile strengths,elastic modulus,and water penetration were tested to research the effect of coarse aggregate content on concrete.The experimental results reveal that slump reduces with increasing of coarse aggregate content,while compressive strength,elastic modulus and flexural tensile strength increase with the coarse aggregate content increasing,and water penetration reduces with coarse aggregate content increasing before 75% then increased.Workability,strength,durability and economical indexes system were established to optimize the coarse aggregate content in concrete based on efficacy coefficient method.The optimization results show that when coarse aggregate content is 60%,the system efficacy coefficient reaches to 0.89,and it expresses the better comprehensive performance.展开更多
Adding polypropylene(PP)fibers and coarse aggregates has become a popular way to enhance the strength and stability of the cemented tailings backfilling(CTB)body.It is essential to explore the influence of tailings-ag...Adding polypropylene(PP)fibers and coarse aggregates has become a popular way to enhance the strength and stability of the cemented tailings backfilling(CTB)body.It is essential to explore the influence of tailings-aggregate ratio and fiber content on the mechanical properties of CTB samples.The comprehensive tests of the unconfined compressive strength(UCS),slump and microstructure were designed,and the regression models were established to characterize the effect of the strength,ductility and fluidity.The results indicate that the tailings-aggregate ratio of 5:5 and PP fiber content of 0.5 kg/m^(3) are the optimum point considering the UCS,cracking strain,peak strain and post-peak ductility.The tailings-aggregate ratio is consistent with the unary quadratic to the UCS and a linear model with a negative slope to the slump.Microstructural analysis indicates that PP fiber tends to bridge the cracks and rod-mill sand to serve as the skeleton of the paste matrix,which can enhance the compactness and improve the ductility of the CTB.The results presented here are of great significance to the understanding and application of coarse aggregates and fibers to improve the mechanical properties of CTB.展开更多
The effect of recycled coarse aggregate on concrete compressive strength was investigated based on the concrete skeleton theory. For this purpose, 30 mix proportions of concrete with target cube compressive strength r...The effect of recycled coarse aggregate on concrete compressive strength was investigated based on the concrete skeleton theory. For this purpose, 30 mix proportions of concrete with target cube compressive strength ranging from 20 to 60 MPa were cast with normal coarse aggregate and recycled coarse aggregate from different strength parent concretes. Results of 28-d test show that the strength of different types of recycled aggregate affects the concrete strength obviously. The coarse aggregate added to mortar matrix plays a skeleton role and improves its compressive strength. The skeleton effect of coarse aggregate increases with the increasing strength of coarse aggregate, and normal coarse aggregate plays the highest, whereas the lowest concrete strength occurs when using the weak recycled coarse aggregate. There is a linear relationship between the concrete strength and the corresponding mortar matrix strength. Coarse aggregate skeleton formula is established, and values from experimental tests match the derived expressions.展开更多
The feasibility of using different generations recycled coarse aggregate(RCA) on structural concrete was fully evaluated by studying the performance of the recycled coarse aggregates and their corresponding concrete...The feasibility of using different generations recycled coarse aggregate(RCA) on structural concrete was fully evaluated by studying the performance of the recycled coarse aggregates and their corresponding concretes, the different generations of RCA were recycled by following the repeated mode of ‘concrete-waste concrete-coarse aggregate-concrete'. Moreover, the focus was on ‘three generations' of repeated RCAs, the RCA was produced by crushing and regenerating the artificial accelerated degraded concrete, the process was designed to follow the nature degradation of the concrete with a coupling action of accelerated carbonation and bending load. The properties of x-generation(x=1, 2 or 3) of repeated RCA were systematically investigated and the compressive and splitting tensile strengths of relating structural concretes(with 70% replacement of x-generation of RCA) were studied accordingly. The results show a competent compressive and splitting tensile strength of 30 MPa at 28 th day of structural concretes with all generations of repeated RAC. And the gradual degraded performance of the repeated RCAs was observed with an increased numbers of repetition(1〉2〉3 generations), the overall performances of all repeated RCAs fulfill the Class Ⅲ according to Chinese Standards GB25177-2010. Our gained insight demonstrates a feasibility of using at least 3 generations of repeated RCA for the production of normal structural concrete.展开更多
The effects of carbon dioxide (CO_(2)) curing conditions (temperature,relative humidity and CO_(2) curing time) on the physical properties of recycled coarse aggregate (RCA) with varying attached mortar (AM) contents ...The effects of carbon dioxide (CO_(2)) curing conditions (temperature,relative humidity and CO_(2) curing time) on the physical properties of recycled coarse aggregate (RCA) with varying attached mortar (AM) contents were studied.Before and after CO_(2) curing,the physical properties in terms of the apparent density,water absorption and crushing value of RCA were tested and the quality of RCA was determined.Besides,scanning electron microscope was used to observe the microstructure of RCA.Results show that the physical properties variation of RCA with higher AM content are more significant,and the quality of RCA with lower AM content is easier to be upgraded during CO_(2) curing.The physical properties of RCA with 40.8% AM content are earlier stable than that with no less than 44.5% AM content during CO_(2) curing.The optimal temperature and relative humidity are 50 ℃ and 55% for CO_(2) curing,respectively.CO_(2) curing is incapable of upgrading the quality of RCA with AM no less than 50.6%.The quality of RCA with 44.5% AM content can be upgraded only under the optimum CO_(2) curing conditions.Under relative humidity higher than 40% and the CO_(2) curing time more than 12 h,CO_(2) curing upgrades the quality of RCA with 40.8% AM content.展开更多
High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-ea...High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-easily,which restricts the application of UHPC in deck system. Whether reasonable amount of coarse aggregate can influence the strength of UHPC and improve the shrinkage performance or reduce the cost is still in doubt. Besides,in order to improve its constructability and workability, whether autoclaved curing system of UHPC can be changed remains to be further researched. In response to these circumstances, a systematic experimental study on the strength of UHPC mixed with coarse aggregate in different ratios has been presented in this paper. The three curing systems,namely standard curing,180-200 ℃/1. 1 MPa autoclaved curing,and hot water curing were tested to reveal the relationship between UHPC's properties and curing systems,and the UHPC ' s microstructure was also preliminarily studied by scanning electron microscope( SEM). The experimental research can draw the following conclusions. Under the condition of the same mix ratio, autoclaved curing guarantees the highest compressive strength,followed by hot water curing and standard curing. The compressive strength of concrete increases with the temperature in the range of 25 to 90 ℃ hot water curing,and high temperature in precuring period can speed up the strength development of UHPC,but the sequence of precuring period does not obviously affect the results. In 90 ℃ hot water and autoclaved curing,the strength is over 150 MPa,and it has little relation with gravel ratio. While the value increases first and then decreases in a lower temperature curing with the increasing of gravel amount,even only about 80 MPa at room temperature. The strength increases moderately along with the increase of the curing age by standard curing,especially in the initial stage.展开更多
This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by...This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by-product, waste and recycle materials must be studied and investigated as a source of improved material for soft soils as, an economic and good effect environmental. The study analyzes effects of both replaced mixtures, (SSCA) or (TSCA) on improved soil bearing capacity and expected settlement after verifying the model. Numerical modeling of the one of real store loaded strip using, PLAXIS, 2D, strain deformation behavior to achieve field visible and measured deformations of untreated soft soil. Numerical studies were devolved to investigate geomechanics parameters improved to compare between using (SSCA) or (TSCA) as, replacement mixture. Results demonstrate that using (SSCA) improved compressibility and strength of shallow soft soil layer significantly than using (TCSA) mixture, while (SSCA) improved strip footing ultimate bearing capacity, (UBC), by 84.4% compared with increase of 20.5% when using (TCSA) mixture at the same thickness. In addition, the study highlights the effective (SSCA) replacement thickness ranges between (0.65 ~ 0.80) footing width.展开更多
This study assessed the usefulness of the replacement of coarse aggregate partially with electronic waste(e-waste)plastic in lightweight concrete since developing countries have been challenged with management of e-wa...This study assessed the usefulness of the replacement of coarse aggregate partially with electronic waste(e-waste)plastic in lightweight concrete since developing countries have been challenged with management of e-waste as well as high cost of coarse aggregates for concrete production.Coarse aggregates were replaced with e-waste plastic in concrete at 5%,10%,15%,and 20% for a concrete class of C20.The particle size distribution of the e-waste plastic aggregates was determined as well as the slump,compressive strength,water absorption and bulk density of the concrete.Generally,the slump decreased as the e-waste increased.The compressive strengths decreased for the 5%and 10%replacement of coarse aggregates with e-waste but increased for the 15% and 20% replacement of coarse aggregate with e-waste.0% water absorption was obtained for the 15% and 20% e-waste content while the 10%e-waste concrete obtained 0.01% and the 5% e-waste obtaining of 0.013% after 28days of curing.The densities of 5%,10%,15% and 20% e-waste plastic content decreased as compared to the 0% e-waste plastic content.The values of compressive strength obtained showed that coarse aggregate replacements by e-waste plastic at 15% and 20% may be appropriate for lightweight concrete of class C20/25 since compressive strengths ranged between 16.09 Nmm^(-2) and 22.87 Nmm^(-2).This implies that partial replacement of coarse aggregate with e-waste plastic may be useful for lightweight concrete as well as helping in eradicating the environment of the menace of e-waste plastic.展开更多
Present study is aimed at assessment of geotechnical properties of Laki limestone as coarse aggregate which is being quarried in Nooriabad area,Sindh,Pakistan.Coarse aggregate samples(n=20)of limestone were collected ...Present study is aimed at assessment of geotechnical properties of Laki limestone as coarse aggregate which is being quarried in Nooriabad area,Sindh,Pakistan.Coarse aggregate samples(n=20)of limestone were collected for the evaluation of physico-mechanical properties of the aggregate.Petrographic analysis revealed that the aggregate comprises of hard,compact,massive,crystalline and fossiliferous limestone.It is devoid of any reactive silica(chert,chalcedony)and other harmful constituents like clays or organic matter.Average values of specific gravity,absorption,bulk density,void content and combined index(EI+FI)of collected samples are 2.5,2.1%,1.54 g/cc,38.55%and 13.04%respectively.The values of specific gravity(2.3-2.9),absorption(0-8%),bulk density(1.28 g/cc-1.92 g/cc)and void content(30%-45%)are varying within the range of normal weight aggregate as per American concrete institute(ACI)specifications.On the other hand,absorption values of aggregate samples are slightly higher(2.1%)than the reference range(2%)but meet other requirements.Mechanical properties including aggregate impact value(8.58%),aggregate crushing value(26.66%),Loss Angeles abrasion value(24.77%),sodium sulfate soundness(4.72%),water soluble sulfate(0.006%)and water soluble chloride(0.005%)are found to be within corresponding guidelines set by ASTM.On the other hand,average carbonate content is found to be 89.64%indicating that Laki limestone is of slightly low purity.Except absorption,all physical and mechanical properties lie within specified ranges.It is concluded that Laki limestone is suitable for use as road aggregate and concrete mix design.展开更多
基金Funded by Joint Funds of the National Natural Science Foundation of China(No.U1904188)the Jiangxi Provincial Department of Education Science and Technology Project(Nos.GJJ171079,GJJ181023,and GJJ181022)。
文摘To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate.
基金The National Natural Science Foundation of China(No.51108081)
文摘To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fracture surface) of aggregate particles, is represented by polyhedral particles based on the discrete element method( DEM). A digital specimen comprised of aggregates and air voids is developed. In addition,a static compaction model consisting of a digital specimen and three plates is constructed and a series of evaluation indices such as mean contact force σMCF, wall stress in direction of zcoordinate σWSZZ, porosity and coordination numbers are presented to investigate the motion rules of coarse aggregates at different compaction displacements of 7. 5, 15 and 30 mm. The three-dimensional static compaction model is also verified with laboratory measurements. The results indicate that the compaction displacements are positively related to σMCF and σWSZZ, which increase gradually with the increase in iterative steps. When the compaction proceeds, the digital specimen porosity decreases, but the coordination number increases. The variation ranges of these four indices are different at different compaction displacements. This study provides a method to analyze the compaction mechanism of particle materials such as asphalt mixture and graded broken stone.
基金supported by the National Natural Science Foundation of China (Grant No. 50639050)
文摘Coarse aggregates are the major infrastructure materials of concrete-faced rock-fill dams and are consolidated to bear upper and lateral loads. With the increase of dam height, high confining pressure and complex stress states complicate the shear behavfor of coarse aggregates, and thus impede the high dam's proper construction, operation and maintenance. An experimental program was conducted to study the shear behavior of dam coarse aggregates using a large-scale triaxial shear apparatus. Through triaxial shear tests, the strain-stress behaviors of aggregates were observed under constant confining pressures: 300 kPa, 600 kPa 900 kPa and 1200 kPa. Shear strengths and aggregate breakage characteristics associated with high pressure shear processes are discussed. Stress path tests were conducted to observe and analyze coarse aggregate response under complex stress states. In triaxial shear tests, it was found that peak deviator stresses increase along with confining pressures, whereas the peak principal stress ratios decrease as confining pressures increase With increasing confining pressures, the dilation decreases and the contraction eventually prevails. Initial strength parameters (Poisson's ratio and tangent modulus) show a nonlinear relationship with confining pressures when the pressures are relatively low. Shear strength parameters decrease with increasing confining pressures. The failure envelope lines are convex curves, with clear curvature under low confining pressures. Under moderate confining pressures, dilation is offset by particle breakage. Under high confining pressures, dilation disappears.
基金Project(51038004) supported by the National Natural Science Foundation of ChinaProject(2009318000078) supported by the Western China Communications Construction and Technology Program, China
文摘In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and slice images were obtained by X-ray CT, then the aggregates were extracted by the fuzzy c-means clustering algorithm. Attributions of the particle on different cross-sections were determined by the ‘overlap area method’. And unified three-dimensional Cartesian coordinate system was established based on continuous slice images. The coefficient values of spherical harmonics descriptor representing particles surface profile were gained, then each scanned particle was represented by 60×120 discrete points conformably with spherical harmonics descriptor. The chord length and direction angles were determined by the calculation. With the major axis (L) and orthogonal axis (W and T), the calculated results were compared with those measured by caliper. It is concluded that the new L, W, and T dimension measuring method is able to take the place of the present manual measurement.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.52168015 and 51768005)the Natural Science Foundation of Guangxi(No.2018GXNSFAA281333)the Interdisciplinary Scientific Research Foundation of Guangxi University(No.202200227).
文摘Chloride attack on concrete structures is affected by the complex stress state inside concrete,and the effect of recycled aggregates renders this process more complex.Enhancing the chloride resistance of recycled concrete in a complex environment via carbonization facilitates the popularization and application of recycled concrete and alleviates the greenhouse effect.In this study,the chloride ion diffusion and deformation properties of recycled concrete after carbonization are investigated using a chloride salt load-coupling device.The results obtained demonstrate that the chloride ion diffusivity of recycled concrete first decreases and then increases as the compressive load increases,which is consistent with the behavior of concrete,in that it first undergoes compressive deformation,followed by crack propagation.Carbonation enhances the performance of the recycled aggregates and reduces their porosity,thereby reducing the chloride diffusion coefficient of the recycled concrete under different compressive load combinations.The variation in the chloride ion diffusivity of the carbonized recycled aggregate concrete with the load is consistent with a theoretical formula.
基金Funded by the National Natural Science Foundation of China(No.U1904188)。
文摘A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with different gradations.The fluidity,dynamic yield stress,static yield stress,printed width,printed inclination,compressive strength and ultrasonic wave velocity of 3D printed recycled aggregate concrete(3DPRAC)were further studied.The experimental results demonstrate that,with the increase of small-sized aggregate(4.75-7 mm)content,the bulk density initially increases and then decreases,and the specific surface area gradually increases.The average excess paste thickness fluctuates with both bulk density and specific surface area.The workability of 3DPRAC is closely related to the average excess paste thickness.With an increase in average paste thickness,there is a gradual decrease in dynamic yield stress,static yield stress and printed inclination,accompanied by an increase in fluidity and printed width.The mechanical performance of 3DPRAC closely correlates with the bulk density.With an increase in the bulk density,there is an increase in the ultrasonic wave velocity,accompanied by a slight increase in the compressive strength and a significant decrease in the anisotropic coefficient.Furthermore,an index for buildability failure of 3DPRAC based on the average excess paste thickness is proposed.
基金This research was funded by the National Natural Science Foundation of China(52078068)Practice Innovation Program of Jiangsu Province(KYCX22_3082).
文摘With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environments is still a complex problem.This paper discusses the durability and recyclability of recycled aggregate concrete(RAC)as a prefabricated material in the harsh environment,the effect of high-temperature curing(60℃,80℃,and 100℃)on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate(RCA_(2))of RAC after 300 freeze-thaw cycles were studied.The frost resistance of RAC was characterized by compressive strength,relative dynamic elastic modulus,and mass loss.As the physical properties of RCA_(2),the apparent density,water absorption,and crushing value were measured.And the SEM images of RAC after 300 freeze-thaw cycles were shown.The results indicated that the frost resistance of RAC cured at 80℃ for 7 days was comparable to that cured in the standard condition(cured for 28 days at 20℃±2℃ and 95%humidity),and the RAC cured at 100℃ was slightly worse.However,the frost resistance of RAC cured at 60℃ deteriorated seriously.The RAC cured at 80℃ for 7 days is the best.Whether after the freeze-thaw cycle or not,the RCA that curd at 60℃,80℃,and 100℃ for 7 days can also meet the requirements of Grade III RCA and be used as the aggregate of non-bearing part of prefabricated concrete components.RCA_(2) which is cured at 80℃ for 7 days had the best physical properties.
基金supported by the Key R&D Projects in Yunnan Province under Grant Number 202203AC100004Additional funding was provided by the Major Science and Technology Project of the Ministry of Water Resources under Grant Number SKS-2022057.
文摘Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and environmental friendly characteristics.This study examines the key influencing factors that affect the behavior of this material,such as the steel fiber volume ratio,recycled aggregate replacement rate,concrete strength grade,anchorage length,and stirrup constraint.The study investigates the bond failure morphology,bond-slip,and bond strength constitutive relationship of steel fiber recycled concrete.The results show that the addition of steel fibers at 0.5%,1.0%,and 1.5%volume ratios can improve the ultimate bond strength of pull-out specimens by 9.05%,6.94%,and 5.52%,respectively.The replacement rate of recycled aggregate has minimal effect on the typical bond strength of pull-out specimens.However,the ultimate bond strengths of pull-out specimens with concrete strength grades C45 and C60 have improved compared to those with C30 grade.The specimens with longer anchorage lengths exhibit lower ultimate bond strength,with a reduction of 33.19%and 46.37%for anchorage lengths of 5D and 7D,respectively,compared to those without stirrups.Stirrup restraint of 1φ8 and 2φ8 improves the ultimate bond strength by 5.29%and 6.90%,respectively.Steel fibers have a significant effect on the behavior of concrete after it cracks,especially during the stable expansion stage,crack instability expansion stage,and failure stage.
基金Funded by the National Natural Science Foundation of China(No.51908183)the Natural Science Foundation of Hebei Province(No.E2023202101)。
文摘The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.
基金This work was funded by the National Natural Science Foundation(NSFC)of PR China(Nos.51778463,51438007,52078370).
文摘To model the concrete with complex internal structure of concrete with large sized aggregates the effect of internal structure on uniaxial compression behavior are studied.Large-sized recycled aggregates behave differently in the concrete matrix.To understand the influence on concrete matrix,a finite element model was developed to model recycled aggregate concrete composed of multiple randomly distributed irregular aggregates and cement mortar.The model was used to calculate the effect of large-size recycled coarse aggregate(LRCA)on the strength of recycled aggregate concrete and simulate the compressive strength of cubes and prisms.The factors such as the strength of new concrete,the strength of old concrete,the defective element content,the shape of LRCA,the incorporation ratio of LRCA and the size of LRCA that can affect the strength of concrete are analyzed in this paper.Results showed that the influence of various factors on concrete strength are in the following desend-ing order:(i)strength of newly poured concrete;(ii)original strength of recycled aggregates;and(iii)defects.It can be seen that the cracking of the phase material elements starts along the bonding zones between gravel and mortar or the new and old mortar,then spreads to mortar and finally to LRCA.The cracking tendency is most significant in LRCA,which means that the fracturing is related to the fracture of the LRCA.After evaluating the variations in strength and quality of the recycled concrete,the influences on concrete strength and quality were studied.The results showed that the proposed concrete model with LRCA was successfully applied to studying the uniaxial compressive behavior of concrete with large-size recycled coarse aggregate.
文摘Natural stone aggregate forms the bulk volume of concrete and has contributed to the increased cost of concrete production. This has led to the search for alternate aggregates such as lateritic stone for concrete production. This paper investigates the engineering properties of concrete produced with lateritic aggregate (LA) as the coarse aggregate replacement and coconut husk fibre (CHF) as reinforcement. Natural stone aggregate was replaced by LA at 0%, 10%, 20%, 30%, 40%, and 50%, with 0.25% constant CHF by weight. A mix proportion of 1:1.5:3 with a water-cement ratio of 0.6 was used for producing concrete. A total of 162 specimens (90 cubes and 72 beams) were prepared and tested at the 7, 14, 21, and 28 days of curing. The highest compressive strength was 43.36 N/mm2 (10% LA replacement) as compared to the control of 41.51 N/mm2. The 10% LA replacement obtained the highest flexural strength of 5.35 N/mm2 as compared with the 5.29 N/mm2 for the control. The water absorption of the concrete increased from 2.8% (control) to 3.57% (50% replacement LA). Scanning electron microscopy (SEM) revealed micro gaps between CHF and LA concrete. The study, therefore, concludes that the use of LA and CHF positively influenced the strength properties of concrete. 10% LA replacement of coarse aggregate and 0.25% CHF is recommended to practitioners for use.
基金Funded by the National Mega-project of Scientific & Technical Supporting Programs,Ministry of Science & Technology of China(No.2006BAJ04A04)the Education Department of Liaoning Province,China(No. 2008282)
文摘The influence of coarse aggregate content on concrete properties was investigated.From the perspective of Frame Concrete Theory,six groups concrete were produced with the same proportion except for coarse aggregate content,with coarse aggregate content of 0%,40%,50%,60%,75%,and 80%,respectively.Slump,compressive and flexural tensile strengths,elastic modulus,and water penetration were tested to research the effect of coarse aggregate content on concrete.The experimental results reveal that slump reduces with increasing of coarse aggregate content,while compressive strength,elastic modulus and flexural tensile strength increase with the coarse aggregate content increasing,and water penetration reduces with coarse aggregate content increasing before 75% then increased.Workability,strength,durability and economical indexes system were established to optimize the coarse aggregate content in concrete based on efficacy coefficient method.The optimization results show that when coarse aggregate content is 60%,the system efficacy coefficient reaches to 0.89,and it expresses the better comprehensive performance.
基金Project(51722401)supported by the National Science Foundation for Excellent Young Scholars of ChinaProject(51334001)supported by the Key Program of National Natural Science Foundation of ChinaProject(FRF-TP-18-003C1)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Adding polypropylene(PP)fibers and coarse aggregates has become a popular way to enhance the strength and stability of the cemented tailings backfilling(CTB)body.It is essential to explore the influence of tailings-aggregate ratio and fiber content on the mechanical properties of CTB samples.The comprehensive tests of the unconfined compressive strength(UCS),slump and microstructure were designed,and the regression models were established to characterize the effect of the strength,ductility and fluidity.The results indicate that the tailings-aggregate ratio of 5:5 and PP fiber content of 0.5 kg/m^(3) are the optimum point considering the UCS,cracking strain,peak strain and post-peak ductility.The tailings-aggregate ratio is consistent with the unary quadratic to the UCS and a linear model with a negative slope to the slump.Microstructural analysis indicates that PP fiber tends to bridge the cracks and rod-mill sand to serve as the skeleton of the paste matrix,which can enhance the compactness and improve the ductility of the CTB.The results presented here are of great significance to the understanding and application of coarse aggregates and fibers to improve the mechanical properties of CTB.
基金Supported by the National Mega-Project of Key Technology R&D Program in the 11th Five-Year Plan of China (No.2006BAJ04A04)the Education Department of Liaoning Province, China (No. 2008282)
文摘The effect of recycled coarse aggregate on concrete compressive strength was investigated based on the concrete skeleton theory. For this purpose, 30 mix proportions of concrete with target cube compressive strength ranging from 20 to 60 MPa were cast with normal coarse aggregate and recycled coarse aggregate from different strength parent concretes. Results of 28-d test show that the strength of different types of recycled aggregate affects the concrete strength obviously. The coarse aggregate added to mortar matrix plays a skeleton role and improves its compressive strength. The skeleton effect of coarse aggregate increases with the increasing strength of coarse aggregate, and normal coarse aggregate plays the highest, whereas the lowest concrete strength occurs when using the weak recycled coarse aggregate. There is a linear relationship between the concrete strength and the corresponding mortar matrix strength. Coarse aggregate skeleton formula is established, and values from experimental tests match the derived expressions.
基金Funded by the National Natural Science Foundation of China(No.51278073)Prospective Joint Research Project of Jiangsu Province(Nos.BY2013024-17,BY2014037-30,and BY2015027-23)
文摘The feasibility of using different generations recycled coarse aggregate(RCA) on structural concrete was fully evaluated by studying the performance of the recycled coarse aggregates and their corresponding concretes, the different generations of RCA were recycled by following the repeated mode of ‘concrete-waste concrete-coarse aggregate-concrete'. Moreover, the focus was on ‘three generations' of repeated RCAs, the RCA was produced by crushing and regenerating the artificial accelerated degraded concrete, the process was designed to follow the nature degradation of the concrete with a coupling action of accelerated carbonation and bending load. The properties of x-generation(x=1, 2 or 3) of repeated RCA were systematically investigated and the compressive and splitting tensile strengths of relating structural concretes(with 70% replacement of x-generation of RCA) were studied accordingly. The results show a competent compressive and splitting tensile strength of 30 MPa at 28 th day of structural concretes with all generations of repeated RAC. And the gradual degraded performance of the repeated RCAs was observed with an increased numbers of repetition(1〉2〉3 generations), the overall performances of all repeated RCAs fulfill the Class Ⅲ according to Chinese Standards GB25177-2010. Our gained insight demonstrates a feasibility of using at least 3 generations of repeated RCA for the production of normal structural concrete.
基金Funded by the National Natural Science Foundation of China (Nos. 52078068, 52108190)Changzhou Science and Technology Project (No. CJ20200079)Postgraduate Research&Practice Innovation Program of Jiangsu Province (No. KYCX21_2846)。
文摘The effects of carbon dioxide (CO_(2)) curing conditions (temperature,relative humidity and CO_(2) curing time) on the physical properties of recycled coarse aggregate (RCA) with varying attached mortar (AM) contents were studied.Before and after CO_(2) curing,the physical properties in terms of the apparent density,water absorption and crushing value of RCA were tested and the quality of RCA was determined.Besides,scanning electron microscope was used to observe the microstructure of RCA.Results show that the physical properties variation of RCA with higher AM content are more significant,and the quality of RCA with lower AM content is easier to be upgraded during CO_(2) curing.The physical properties of RCA with 40.8% AM content are earlier stable than that with no less than 44.5% AM content during CO_(2) curing.The optimal temperature and relative humidity are 50 ℃ and 55% for CO_(2) curing,respectively.CO_(2) curing is incapable of upgrading the quality of RCA with AM no less than 50.6%.The quality of RCA with 44.5% AM content can be upgraded only under the optimum CO_(2) curing conditions.Under relative humidity higher than 40% and the CO_(2) curing time more than 12 h,CO_(2) curing upgrades the quality of RCA with 40.8% AM content.
基金National Natural Science Foundations of China(Nos.51478120,U1305245)
文摘High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-easily,which restricts the application of UHPC in deck system. Whether reasonable amount of coarse aggregate can influence the strength of UHPC and improve the shrinkage performance or reduce the cost is still in doubt. Besides,in order to improve its constructability and workability, whether autoclaved curing system of UHPC can be changed remains to be further researched. In response to these circumstances, a systematic experimental study on the strength of UHPC mixed with coarse aggregate in different ratios has been presented in this paper. The three curing systems,namely standard curing,180-200 ℃/1. 1 MPa autoclaved curing,and hot water curing were tested to reveal the relationship between UHPC's properties and curing systems,and the UHPC ' s microstructure was also preliminarily studied by scanning electron microscope( SEM). The experimental research can draw the following conclusions. Under the condition of the same mix ratio, autoclaved curing guarantees the highest compressive strength,followed by hot water curing and standard curing. The compressive strength of concrete increases with the temperature in the range of 25 to 90 ℃ hot water curing,and high temperature in precuring period can speed up the strength development of UHPC,but the sequence of precuring period does not obviously affect the results. In 90 ℃ hot water and autoclaved curing,the strength is over 150 MPa,and it has little relation with gravel ratio. While the value increases first and then decreases in a lower temperature curing with the increasing of gravel amount,even only about 80 MPa at room temperature. The strength increases moderately along with the increase of the curing age by standard curing,especially in the initial stage.
文摘This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by-product, waste and recycle materials must be studied and investigated as a source of improved material for soft soils as, an economic and good effect environmental. The study analyzes effects of both replaced mixtures, (SSCA) or (TSCA) on improved soil bearing capacity and expected settlement after verifying the model. Numerical modeling of the one of real store loaded strip using, PLAXIS, 2D, strain deformation behavior to achieve field visible and measured deformations of untreated soft soil. Numerical studies were devolved to investigate geomechanics parameters improved to compare between using (SSCA) or (TSCA) as, replacement mixture. Results demonstrate that using (SSCA) improved compressibility and strength of shallow soft soil layer significantly than using (TCSA) mixture, while (SSCA) improved strip footing ultimate bearing capacity, (UBC), by 84.4% compared with increase of 20.5% when using (TCSA) mixture at the same thickness. In addition, the study highlights the effective (SSCA) replacement thickness ranges between (0.65 ~ 0.80) footing width.
文摘This study assessed the usefulness of the replacement of coarse aggregate partially with electronic waste(e-waste)plastic in lightweight concrete since developing countries have been challenged with management of e-waste as well as high cost of coarse aggregates for concrete production.Coarse aggregates were replaced with e-waste plastic in concrete at 5%,10%,15%,and 20% for a concrete class of C20.The particle size distribution of the e-waste plastic aggregates was determined as well as the slump,compressive strength,water absorption and bulk density of the concrete.Generally,the slump decreased as the e-waste increased.The compressive strengths decreased for the 5%and 10%replacement of coarse aggregates with e-waste but increased for the 15% and 20% replacement of coarse aggregate with e-waste.0% water absorption was obtained for the 15% and 20% e-waste content while the 10%e-waste concrete obtained 0.01% and the 5% e-waste obtaining of 0.013% after 28days of curing.The densities of 5%,10%,15% and 20% e-waste plastic content decreased as compared to the 0% e-waste plastic content.The values of compressive strength obtained showed that coarse aggregate replacements by e-waste plastic at 15% and 20% may be appropriate for lightweight concrete of class C20/25 since compressive strengths ranged between 16.09 Nmm^(-2) and 22.87 Nmm^(-2).This implies that partial replacement of coarse aggregate with e-waste plastic may be useful for lightweight concrete as well as helping in eradicating the environment of the menace of e-waste plastic.
文摘Present study is aimed at assessment of geotechnical properties of Laki limestone as coarse aggregate which is being quarried in Nooriabad area,Sindh,Pakistan.Coarse aggregate samples(n=20)of limestone were collected for the evaluation of physico-mechanical properties of the aggregate.Petrographic analysis revealed that the aggregate comprises of hard,compact,massive,crystalline and fossiliferous limestone.It is devoid of any reactive silica(chert,chalcedony)and other harmful constituents like clays or organic matter.Average values of specific gravity,absorption,bulk density,void content and combined index(EI+FI)of collected samples are 2.5,2.1%,1.54 g/cc,38.55%and 13.04%respectively.The values of specific gravity(2.3-2.9),absorption(0-8%),bulk density(1.28 g/cc-1.92 g/cc)and void content(30%-45%)are varying within the range of normal weight aggregate as per American concrete institute(ACI)specifications.On the other hand,absorption values of aggregate samples are slightly higher(2.1%)than the reference range(2%)but meet other requirements.Mechanical properties including aggregate impact value(8.58%),aggregate crushing value(26.66%),Loss Angeles abrasion value(24.77%),sodium sulfate soundness(4.72%),water soluble sulfate(0.006%)and water soluble chloride(0.005%)are found to be within corresponding guidelines set by ASTM.On the other hand,average carbonate content is found to be 89.64%indicating that Laki limestone is of slightly low purity.Except absorption,all physical and mechanical properties lie within specified ranges.It is concluded that Laki limestone is suitable for use as road aggregate and concrete mix design.