期刊文献+
共找到41,165篇文章
< 1 2 250 >
每页显示 20 50 100
Dye-sensitized Solar Cells with Higher J_(sc) by Using Polyvinylidene Fluoride Membrane Counter Electrodes 被引量:3
1
作者 Xiaodong Li Dingwen Zhang +4 位作者 Si Chen Heng Zhang Zhuo Sun Sumei Huang Xijiang Yin 《Nano-Micro Letters》 SCIE EI CAS 2011年第3期195-199,共5页
A flexible counter electrode(CE) for dye-sensitized solar cells(DSCs) has been fabricated using a micro-porous polyvinylidene fluoride membrane as support media and sputtered Pt as the catalytic material.Non-conventio... A flexible counter electrode(CE) for dye-sensitized solar cells(DSCs) has been fabricated using a micro-porous polyvinylidene fluoride membrane as support media and sputtered Pt as the catalytic material.Non-conventional structure DSCs have been developed by the fabricated CEs. The Pt metal was sputtered onto one surface of the membrane as the catalytic material. DSCs were assembled by attaching the Ti O2 electrode to the membrane surface without Pt coating. The membrane was with cylindrical pore geometry. It served not only as a substrate for the CE but also as a spacer for the DSC. The fabricated DSC with the flexible membrane CE showed higher photocurrent density than the conventional sandwich devices based on chemically deposited Pt/FTO glass, achieving a photovoltaic conversion efficiency of 4.43%. The results provides useful information in investigation and development of stable, low-cost, simple-design, flexible and lightweight DSCs. 展开更多
关键词 Polyvinylidene fluoride counter electrode FLEXIBLE Dye-sensitized solar cell
下载PDF
Carbon nitride transparent counter electrode prepared by magnetron sputtering for a dye-sensitized solar cell 被引量:2
2
作者 Chaoyu Wu Guoran Li +2 位作者 Xueqin Cao Bao Lei Xueping Gao 《Green Energy & Environment》 SCIE 2017年第3期302-309,共8页
Carbon nitride(CN_x) films supported on fluorine-doped tin oxide(FTO) glass are prepared by radio frequency magnetron sputtering, in which the film thicknesses are 90-100 nm, and the element components in the CNX film... Carbon nitride(CN_x) films supported on fluorine-doped tin oxide(FTO) glass are prepared by radio frequency magnetron sputtering, in which the film thicknesses are 90-100 nm, and the element components in the CNX films are in the range of x = 0.15-0.25. The as-prepared CN_x is for the first time used as counter electrode for dye-sensitized solar cells(DSSCs), and show a preparation-temperature dependent electrochemical performance. X-ray photoelectron spectroscopy(XPS) demonstrates that there is a higher proportion of sp^2 C=C and sp^3 C-N hybridized bonds in CN_x-500(the sample treated at 500 ℃) than in CNX-RT(the sample without a heat treatment). It is proposed that the sp^2 C=C and sp^3 C-N hybridized bonds in the CN_x films are helpful for improving the electrocatalytic activities in DSSCs. Meanwhile, Raman spectra also prove that CN_x-500 has a relatively high graphitization level that means an increasing electrical conductivity. This further explains why the sample after the heat treatment has a higher electrochemical performance in DSSCs. In addition, the as-prepared CN_x counter electrodes have a good light transmittance in the visible light region. The results are meaningful for developing low-cost metal-free transparent counter electrodes for DSSCs. 展开更多
关键词 Solar cells counter electrodes Carbon nitride ELECTROCATALYSIS Magnetron sputtering
下载PDF
Enhanced Electrocatalytic Activity by RGO/MWCNTs/NiO Counter Electrode for Dye-sensitized Solar Cells 被引量:1
3
作者 Majid Raissan Al-bahrani Waqar Ahmad +3 位作者 Hadja Fatima Mehnane Ying Chen Ze Cheng Yihua Gao 《Nano-Micro Letters》 SCIE EI CAS 2015年第3期298-306,共9页
We applied the reduced graphene oxide/multi-walled carbon nanotubes/nickel oxide(RGO/MWCNTs/Ni O)nanocomposite as the counter electrode(CE) in dye-sensitized solar cells(DSSCs) on fluorine-doped tin oxide substrates b... We applied the reduced graphene oxide/multi-walled carbon nanotubes/nickel oxide(RGO/MWCNTs/Ni O)nanocomposite as the counter electrode(CE) in dye-sensitized solar cells(DSSCs) on fluorine-doped tin oxide substrates by blade doctor method. Power conversion efficiency(PCE) of 8.13 % was achieved for this DSSCs device, which is higher than that of DSSCs devices using Ni O, RGO, and RGO/Ni O-CE(PCE = 2.71 %, PCE = 6.77 % and PCE = 7.63 %). Also, the fill factor of the DSSCs devices using the RGO/MWCNTs/Ni O-CE was better than that of other CEs. The electron transfer measurement of cyclic voltammetry and electrochemical impedance spectroscopy showed that RGO/MWCNTs/Ni O film could provide fast electron transfer between the CE and the electrolyte, and high electrocatalytic activity for the reduction of triiodide in a CE based on RGO/MWCNTs/Ni O in a DSSC. 展开更多
关键词 Graphene oxide Carbon nanotubes Nickel oxide counter electrode Dye-sensitized solar cells
下载PDF
Theoretical design and experimental synthesis of counter electrode for dye-sensitized solar cells: Amino-functionalized graphene
4
作者 Yiyi Jia Yantao Shi +1 位作者 Jieshan Qiu Ce Hao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第5期861-867,共7页
For some specific catalytic reaction, how to construct active sites on two dimensional materials is of great scientific significance. Dye-sensitized solar cells(DSCs) can be viewed as one representative photovoltaics ... For some specific catalytic reaction, how to construct active sites on two dimensional materials is of great scientific significance. Dye-sensitized solar cells(DSCs) can be viewed as one representative photovoltaics because in which liquid electrolyte with triiodide/iodide(I_3^-/I^-) as redox couples are involved. In this study, amino-functionalized graphene(AFG) has been designed according to theoretically analyzing iodine reduction reaction(IRR) processes and rationally screening the volcanic plot. Then, such AFG has been successfully synthesized by a simple hydrothermal method and shows high electrocatalytic activity towards IRR when serving as counter electrode in DSCs. Finally, a high conversion efficiency of 7.39% by AFG-based DSCs was obtained, which is close to that using Pt as counter electrode. 展开更多
关键词 Dye-sensitized solar cell counter electrode Density functional theory Volcanic plot Amio-functionalized graphene
下载PDF
Fabrication and Evaluation of Low-cost Cu_2ZnSn(S,Se)_4 Counter Electrodes for Dyesensitized Solar Cells
5
作者 Jie Shen Dingwen Zhang +3 位作者 Junjie Li Xiaodong Li Zhuo Sun Sumei Huang 《Nano-Micro Letters》 SCIE EI CAS 2013年第4期281-288,共8页
We explore a simple and eco-friendly approach for preparing CZTS powders and a screen-printing process for Cu_2ZnSn(S,Se)_4(CZTSSe) counter electrodes(CEs) in dye-sensitized solar cells(DSCs). Cu_2ZnSnS_4(CZTS) nanopa... We explore a simple and eco-friendly approach for preparing CZTS powders and a screen-printing process for Cu_2ZnSn(S,Se)_4(CZTSSe) counter electrodes(CEs) in dye-sensitized solar cells(DSCs). Cu_2ZnSnS_4(CZTS) nanoparticles have been synthesized via a hydrazine-free solvothermal approach without the assistance of organic ligands. CZTS has been prepared by directly drop-casting the CZTS ink on the cleaned FTO glass, while CZTSSe CEs have been fabricated by screen-printing CZTS pastes, followed by post selenization using Se vapor obtained from elemental Se pellets. The crystal structure, composition and morphology of the as-deposited CZTS nanoparticles and CZTSSe electrodes are characterized by X-ray diffractometer, energy dispersive spectrometer, field emission scanning electron microscopy and transmission electron microscopy.The electrochemical properties of CZTS, CZTSSe and Pt CE based DSCs are examined and analyzed by electrochemical impedance spectroscopy. The prepared CZTS and CZTSSe CEs exhibit a cellular structure with high porosity. DSCs fabricated with CZTSSe CEs achieve a power conversion efficiency of 5.75% under AM 1.5 G illumination with an intensity of 100 m W/cm^2, which is higher than that(3.22%) of the cell using the CZTS CE. The results demonstrate that the CZTSSe CE possesses good electrocatalytic activity for the reduction of charge carriers in electrolyte. The comprehensive CZTSSe CE process is cheap and scalable. It can make large-scale electro-catalytic film fabrication cost competitive for both energy harvesting and storage applications. 展开更多
关键词 Copper-zinc-tin-chalcogenide SELENIZATION counter electrode Dye-sensitized solar cells
下载PDF
Multiple active components synergistically driven heteroatom-doped porous carbon as high-performance counter electrode in dye-sensitized solar cells 被引量:2
6
作者 Hongyu Jing Danyang Wu +4 位作者 Suxia Liang Xuedan Song Yonglin An Ce Hao Yantao Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第4期89-94,共6页
A facile template-free in situ self-activation approach for the multiple active components synergistically driven porous carbon was presented via a feasible annealing process.The biomass-derived carbon without additio... A facile template-free in situ self-activation approach for the multiple active components synergistically driven porous carbon was presented via a feasible annealing process.The biomass-derived carbon without additional activation reagents was fabricated using K-rich pomelo peel(PP)as the carbon source,which possesses a high electric conductivity where abundant functional hetero-metal atoms are doped into the carbon framework that playing the role of catalytic graphitization.The K^+that exists within the biomass can induce self-activation during pyrolysis apart from the activating gases during the pyrolysis process.The resulting electrocatalyst of PP-850(PP was pyrolyzed at 850°C in an N_2atmosphere)with abundant heteroatoms possesses a higher power conversion efficiency(PCE)of 7.81%as the counter electrode(CE)of dye-sensitized solar cells(DSCs)compared with the CEs calcinated at other temperatures and a similar PCE with Pt counterpart(8.24%)based on the liquid I_3^-/I^-electrolyte.The better electrocatalytic performance is attributed to the synergistic effect between self-activation and the co-doping of nitrogen,sulfur and phosphorus all together in a carbon matrix.Due to the feasibility of large-scale production,rich heteroatom doping,the PP-derived carbon,which simplifies the procedure and decreases the cost,has a potential application for an alternative electrocatalyst for high-performance photovoltaic devices. 展开更多
关键词 counter electrode SELF-ACTIVATION Biomass-derived carbon ELECTROCATALYTIC performance
下载PDF
Recent Progress of Counter Electrodes in Nanocrystalline Dye-sensitized Solar Cells 被引量:2
7
作者 Kexin LI Zhexun YU Yanhong LUO Dongmei LI Qingbo MENG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第5期577-582,共6页
敏化染料的太阳能电池(DSC ) 在于有 nanoparticulated 半导体, sensitizers,电解质和相反的电极(CE ) 的几 differentmaterials:photoanodes 的联合。每材料为 CE 的主要功能是把电子转移到氧化还原作用电解质和 regenerate 碘化物... 敏化染料的太阳能电池(DSC ) 在于有 nanoparticulated 半导体, sensitizers,电解质和相反的电极(CE ) 的几 differentmaterials:photoanodes 的联合。每材料为 CE 的主要功能是把电子转移到氧化还原作用电解质和 regenerate 碘化物离子的太阳能 intoelectricity.The 的变换执行特定的任务。GE 的工作主要集中于运动表演的研究和传统的 CE 的稳定性改进 DSC 的全面效率,寻求新奇设计概念或新材料。在这评论,发展和研究不同 CE 材料和他们的电气化学的表演进行,并且这些问题被讨论。 展开更多
关键词 计数器电极 燃料 敏化作用 聚合物
下载PDF
Review on transition metal compounds based counter electrode for dye-sensitized solar cells 被引量:1
8
作者 Chenjing Gao Qianji Han Mingxing Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期703-712,共10页
Commercial application of the dye-sensitized solar cells(DSCs) depends on great improvement of the power conversion efficiency and reduction of the fabrication cost. Generally, developing low cost counter electrode ca... Commercial application of the dye-sensitized solar cells(DSCs) depends on great improvement of the power conversion efficiency and reduction of the fabrication cost. Generally, developing low cost counter electrode catalysts to replace the expensive Pt counter electrode is a feasible path to reduce the production cost of DSCs. In this review article, we summarize the recent progress on the transition metal compound based counter electrode catalysts containing carbides, nitrides, oxides, sulfides, phosphide, selenides, borides, silicide, and telluride toward the regeneration of the traditional iodide redox couple.Moreover, the benefits and drawbacks of each kind of CE catalyst are discussed and the research directions to design new counter electrode catalysts in future research are also proposed. 展开更多
关键词 电极催化剂 太阳能电池 金属混合物 敏化染料 评论 氧化还原作用 制造费用 变换效率
下载PDF
The effect of transition metal ions (M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis polyaniline as counter electrodes in dye-sensitized solar cells 被引量:2
9
作者 Kezhong Wu Lei Chen +2 位作者 Weizhen Cui Bei Ruan Mingxing Wu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期671-675,共5页
The effect of transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis of polyaniline(PANI) used as a platinum-free counter electrode(CE) in dye-sensitized solar cells(DSSCs) was investi... The effect of transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis of polyaniline(PANI) used as a platinum-free counter electrode(CE) in dye-sensitized solar cells(DSSCs) was investigated.PANI was synthesized by co-polymerization of aniline in the presence of different transition metal ions by using potassium dichromate in acidic medium. It was found that the ion doping of PANI showed a certain catalytic activity for the regeneration of traditional iodide/triiodide(I^-/I_3^-) redox couples. The power conversion efficiency(η) of PANI CEs doped with Mn^(2+),Ni^(2+),Co^(2+) (4.41%, 2.36% and 2.10%, respectively) were higher than 1.94%, the value measured for PANI CE without doping. Doping with Cu^(2+)decreased the power conversion efficiency of PANI CE(PANI-Cu^(2+) η = 1.41%). The electrical properties of the PANI, PANI-Ni^(2+), PANI-Co^(2+),PANI-Mn^(2+) and PANI-Cu^(2+) were studied by cyclic voltammetry(CV), impedance(EIS), and Tafel polarization curve. The experimental results confirmed that PANI was affected by the doping of different transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)). These results indicate a potential application of ion doped PANI as counter electrode in cost-effective DSSCs. 展开更多
关键词 染料敏化太阳能电池 过渡金属离子 化学合成 聚苯胺 对电极 功率转换效率 PANI 离子掺杂
下载PDF
Low temperature fabrication of flexible carbon counter electrode on ITO-PEN for dye-sensitized solar cells 被引量:1
10
作者 Li Li Chen Jia Liu +3 位作者 Jing Bo Zhang Xiao Wen Zhou Xiao Ling Zhang Yuan Lin 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第9期1137-1140,共4页
一个新奇低温度方法被用来相反准备 mesoporous 碳(MC ) 做铟的锡氧化物上的电极(CE ) 为灵活敏化染料的太阳能电池(DSSC ) 的涂的聚乙烯 naphthalate (ITO 国际笔会) 。有碳装载 280 渭 g 厘米的获得的灵活 MC CE ? 2 被 SEM, XRD 和... 一个新奇低温度方法被用来相反准备 mesoporous 碳(MC ) 做铟的锡氧化物上的电极(CE ) 为灵活敏化染料的太阳能电池(DSSC ) 的涂的聚乙烯 naphthalate (ITO 国际笔会) 。有碳装载 280 渭 g 厘米的获得的灵活 MC CE ? 2 被 SEM, XRD 和电气化学的阻抗描绘。与准备灵活 MC CE 制作的 DSSC 的 light-to-electricity 变换效率基于 decomposited 磅 CE 是 DSSC 的中的 86% 个。 展开更多
关键词 染料敏化太阳能电池 制备方法 电极对 低温度 ITO PEN 聚萘二甲酸
下载PDF
Unique ZnS nanobuns decorated with reduced graphene oxide as an efficient and low-cost counter electrode for dye-sensitized solar cells 被引量:1
11
作者 Jie Yin Jie Wang +3 位作者 Huaiyong Li Huiyan Ma Wenzhi Li Xin Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第5期559-563,共5页
Unique ZnS nanobuns decorated with reduced graphene oxide(RGO) was synthesized and found to exhibit a synergetic effect as a highly efficient and low-cost counter electrode(CE) in dye-sensitized solar cells(DSCs). Usi... Unique ZnS nanobuns decorated with reduced graphene oxide(RGO) was synthesized and found to exhibit a synergetic effect as a highly efficient and low-cost counter electrode(CE) in dye-sensitized solar cells(DSCs). Using this ZnS-RGO CE, a power conversion efficiency(PCE) of 7.03% was achieved. This value was 53% and 41% higher than those of pure ZnS and RGO CEs, respectively. The ZnS-RGO nanocomposite is indeed an efficient and cost-effective Pt-like alternative for iodine reduction reaction. 展开更多
关键词 染料敏化太阳能电池 还原反应 ZNS 低成本 氧化物 对电极 石墨 计数器
下载PDF
Well-aligned Ni Pt alloy counter electrodes for high-efficiency dye-sensitized solar cell applications
12
作者 Zhibin Pang Yuanyuan Zhao +3 位作者 Yanyan Duan Jialong Duan Qunwei Tang Liangmin Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第3期49-56,共8页
Development of cost-effective and robust counter electrodes(CEs) is a persistent objective for highefficiency dye-sensitized solar cells(DSSCs). To achieve this goal, we present here the hydrothermal synthesis of well... Development of cost-effective and robust counter electrodes(CEs) is a persistent objective for highefficiency dye-sensitized solar cells(DSSCs). To achieve this goal, we present here the hydrothermal synthesis of well-aligned Ni Pt alloy CEs, which is templated by ZnO nanowires and nanosheets. The preliminary results demonstrate that Ni Pt alloy electrodes are featured by increased charge-transfer processes and electrocatalytic activity in comparison with expensive Pt CE, yielding power conversion efficiencies of 8.29% and 7.41% in corresponding DSSCs with Ni Pt nanowire and nanosheet alloy CEs, respectively. Additionally, the Ni Pt alloy CEs also display extraordinary dissolution-resistant ability when suffering longterm utilization in liquid-junction DSSCs. 展开更多
关键词 DYE-SENSITIZED solar cell counter electrode ALLOY ELECTROCATALYST
下载PDF
Hierarchical Porous Carbon Counter Electrode for Dye-Sensitized Solar Cells
13
作者 王桂强 黄从从 +1 位作者 邢伟 禚淑萍 《Chinese Physics Letters》 SCIE CAS CSCD 2011年第3期224-227,共4页
Hierarchical porous carbon is prepared by a combination of self-organization and chemical activation and explored as counter electrode for dye-sensitized solar cells.Pore structure analysis shows that micropores gener... Hierarchical porous carbon is prepared by a combination of self-organization and chemical activation and explored as counter electrode for dye-sensitized solar cells.Pore structure analysis shows that micropores generated within the mesopore wall and the pristine mesopore structure of mesoporous carbon are preserved during KOH activation.Electrochemical impedance spectroscopy studies demonstrate a relatively high electrocatalytic activity of hierarchical porous carbon electrode for triiodide reduction,as compared with a pristine mesoporous carbon electrode.This enhanced electrocatalytic activity is beneficial for improving the photovoltaic performance of dyesensitized solar cells.The overall conversion efficiency of dye-sensitized solar cells with the hierarchical porous carbon electrode increased by 11.5%compared with that of the cell with a pristine mesoporous carbon electrode. 展开更多
关键词 electrode SOLAR DYE
原文传递
Low Sheet Resistance Counter Electrode in Dye-sensitized Solar Cell
14
作者 GuiQiangWANG RuiFengLIN +4 位作者 MiaoWANG ChangNengZHANG YuanLIN XuRuiXIAO XuePingLI 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第11期1369-1372,共4页
In order to search for the high efficiency and low sheet resistance counter electrode in dye-sensitized solar cell, we used Ti plate as the conducting substrate to prepare the counter electrode by thermal decompositio... In order to search for the high efficiency and low sheet resistance counter electrode in dye-sensitized solar cell, we used Ti plate as the conducting substrate to prepare the counter electrode by thermal decomposition of H2PtCl6. Ti plate counter electrode shows low sheet resistance, good reflecting performance and matching kinetics. The dye-sensitized solar cell with the Ti plate counter electrode shows better photovoltaic performance than that of the cell with the fluorine-doped tin oxide-coated glass counter electrode. 展开更多
关键词 染料激活太阳能电池 低阻抗薄膜电极 钛电极 匹配动力学 光电性能
下载PDF
Influence of Modification of Counter Electrode on PhotoelectricProperties of Dye-sensitized TiO_2 Solar Cells
15
作者 HAOSan-cun FANLe-qing WUJi-huai HUANGYun-fang LINJian-ming 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第2期205-209,共5页
A dye-sensitized nanocrystalline TiO 2 solar cell(DYSC) was assembled, of which counter electrode was modified already by platinum, nickel and carbon. It was found that the DYSC had better photoelectric performance wh... A dye-sensitized nanocrystalline TiO 2 solar cell(DYSC) was assembled, of which counter electrode was modified already by platinum, nickel and carbon. It was found that the DYSC had better photoelectric performance when the electrode was modified by platinum than by nickel and carbon. The influence of the incidence light wavelength on the incidence monochromatic photoelectric conversion efficiency(IPCE) was investigated. The result shows that the IPCE mainly depends on the short-circuit current density(I SC) of a DYSC, and the IPCE reaches 48.32% under the irradiation with the wavelength of 560 nm when the counter electrode of a DYSC was modified by platinum. The influence of incident light intensity on the photoelectric properties of a DYSC was also investigated. It was found that the I SC and open-circuit voltage(V OC) increased and the fill factor(f f) of the DYSC decreased with the increase of the incident light intensity. 展开更多
关键词 染料增感 纳米晶体 二氧化钛 太阳能电池 对电极 光波长 光强
下载PDF
Low-Cost Dye-Sensitized Solar Cells Based on Interconnected FTO-Activated Carbon Nanoparticulate Counter Electrode Showing High Efficiency
16
作者 Chandana Sampath Kumara Ranasinghe Eranji Nirmada Jayaweera +3 位作者 Gamaralalage Rajanya Ashoka Kumara Rajapakse Mudiyanselage Gamini Rajapakse Herath Mudiyanselage Navarathna Bandara Masamichi Yoshimura 《材料科学与工程(中英文A版)》 2015年第9期361-368,共8页
关键词 染料敏化太阳能电池 高效太阳能电池 颗粒活性炭 纳米电极 FTO 低成本 喷雾热解法 转换效率
下载PDF
Pompon-like NiCo_(2)O_(4) nanospheres:a potential candidate for the counter electrode in quantum dot-sensitized solar cells
17
作者 Qiu Zhang Ting-Ting Zhang +1 位作者 Feng-Yan Li Lin Xu 《Tungsten》 EI CSCD 2023年第2期235-246,共12页
To find a novel counter electrode(CE)material for quantum dot-sensitized solar cells(QDSSCs),pompon-like NiCo_(2)O_(4) nanospheres are synthesized by a facile solvothermal and post-calcination method and we attempt to... To find a novel counter electrode(CE)material for quantum dot-sensitized solar cells(QDSSCs),pompon-like NiCo_(2)O_(4) nanospheres are synthesized by a facile solvothermal and post-calcination method and we attempt to apply it as a CE material for QDS SC.The catalytic performance of NiCo_(2)O_(4) counter electrode is investigated in detail through electrochemical impedance spectroscopy,Tafel test and cyclic voltammetry.The catalytic activity of NiCo_(2)O_(4) CE is superior to that of nanoflower-like Cu2S CE and traditional Cu2S/brass CE,which is mainly attributed to the large specific surface area,outstanding electrical conductivity of bimetallic oxides and the synergistic promotion effect of metals with different valence states.Under standard sunlight(air mass AM 1.5G 100 mW·cm^(-2)),the CdS/CdSe/ZnS-sensitized solar cell assembled with NiCo_(2)O_(4) CE achieved a photoelectric conversion efficiency of 5.55%,with a short current density of 22.49 mA·cm^(-2),an open circuit voltage of 0.574 V,and a fill factor of 0.43,which is slightly higher than the QDSSCs with nanoflower-like Cu_(2)S CE(4.75%)and traditional Cu_(2)S/brass CE(4.69%).This research provides ideas for discovering innovative and efficient CE materials for QDSSCs. 展开更多
关键词 QDSSCs counter electrodes NiCo_(2)O_(4) Cu_(2)S
原文传递
Spinal intradural electrodes: opportunities, challenges and translation to the clinic
18
作者 Bruce Harland Chien Yew Kow Darren Svirskis 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期503-504,共2页
Damage to the spinal cord disrupts the electrically active nerve cells which normally transmit afferent and efferent signals,resulting in loss of motor,sensory,and autonomic functions.Potential treatments for spinal c... Damage to the spinal cord disrupts the electrically active nerve cells which normally transmit afferent and efferent signals,resulting in loss of motor,sensory,and autonomic functions.Potential treatments for spinal cord injury utilizing implanted spinal electrodes can be broadly classified into three different categories.The first of these approaches is“spinal stimulation”where electrodes,usually positioned above the level of injury,provide electrical stimulation to target and disrupt pain signals before they reach the brain.The second approach uses“activity-dependent neuro-technologies”,in which electrodes positioned below the level of injury initiate a complex spatiotemporal pattern of stimulation at the lumbar spinal cord to generate a walking gait in the limbs(Minev et al.,2015;Wagner et al.,2018). 展开更多
关键词 STIMULATION electrodeS utilizing
下载PDF
Textured Asymmetric Membrane Electrode Assemblies of Piezoelectric Phosphorene and Ti_(3)C_(2)T_(x)MXene Heterostructures for Enhanced Electrochemical Stability and Kinetics in LIBs
19
作者 Yihui Li Juan Xie +10 位作者 Ruofei Wang Shugang Min Zewen Xu Yangjian Ding Pengcheng Su Xingmin Zhang Liyu Wei Jing‑Feng Li Zhaoqiang Chu Jingyu Sun Cheng Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期394-414,共21页
Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion... Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs.By contrast,the exfoliated two-dimensional phosphorene owns negligible volume variation,and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics,while its positive influence has not been discussed yet.Herein,a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage.The experimental and simulation analysis reveals that the embedded phosphorene nanosheets not only provide abundant active sites for Li-ions,but also endow the nanocomposite with favorable piezoelectricity,thus promoting the Li-ion transfer kinetics by generating the piezoelectric field serving as an extra accelerator.By waltzing with the MXene framework,the optimized electrode exhibits enhanced kinetics and stability,achieving stable cycling performances for 1,000 cycles at 2 A g^(-1),and delivering a high reversible capacity of 524 m Ah g^(-1)at-20℃,indicating the positive influence of the structural merits of self-assembled nanopiezocomposites on promoting stability and kinetics. 展开更多
关键词 Phosphorene Nanopiezocomposite Piezo-electrochemical coupling Membrane electrode assembly Lithium-ion storage
下载PDF
An in-situ self-etching enabled high-power electrode for aqueous zinc-ion batteries
20
作者 Shuang Hou Dingtao Ma +5 位作者 Yanyi Wang Kefeng Ouyang Sicheng Shen Hongwei Mi Lingzhi Zhao Peixin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期399-408,I0009,共11页
Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Pal... Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane(P-VO/C)as a robust freestanding electrode.Comprehensive investigations including the finite element simulation,in-situ X-ray diffraction,and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn_(x)V_(2)O_5·nH_(2)O,as well as superior storage kinetics with ultrahigh pseudocapacitive contribution.As demonstrated,such electrode can remain a specific capacity of 285 mA h g^(-1)after 100 cycles at 1 A g^(-1),144.4 mA h g^(-1)after 1500 cycles at 30 A g^(-1),and even 97 mA h g^(-1)after 3000 cycles at 60 A g^(-1),respectively.Unexpectedly,an impressive power density of 78.9 kW kg^(-1)at the super-high current density of 100 A g^(-1)also can be achieved.Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit,so as to promote the development of high-power energy storage devices including but not limited to AZIBs. 展开更多
关键词 In-situ self-etching Free-standing electrode Pseudocapacitive storage HIGH-POWER Zinc-ion batteries
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部