期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Low-Complexity Reconstruction of Covariance Matrix in Hybrid Uniform Circular Array
1
作者 Fu Zihao Liu Yinsheng Duan Hongtao 《China Communications》 SCIE CSCD 2024年第3期66-74,共9页
Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital struc... Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital structure has been widely adopted to reduce the cost of radio frequency chains.In this situation, signals received at the antennas are unavailable to the digital receiver, and as a consequence, traditional sample average approach cannot be used for SCM reconstruction in hybrid multi-antenna systems. To address this issue, beam sweeping algorithm(BSA) which can reconstruct the SCM effectively for a hybrid uniform linear array, has been proposed in our previous works. However, direct extension of BSA to a hybrid uniform circular array(UCA)will result in a huge computational burden. To this end, a low-complexity approach is proposed in this paper. By exploiting the symmetry features of SCM for the UCA, the number of unknowns can be reduced significantly and thus the complexity of reconstruction can be saved accordingly. Furthermore, an insightful analysis is also presented in this paper, showing that the reduction of the number of unknowns can also improve the accuracy of the reconstructed SCM. Simulation results are also shown to demonstrate the proposed approach. 展开更多
关键词 hybrid array MILLIMETER-WAVE spatial covariance matrix uniform circular array
下载PDF
Empirical Likelihood Statistical Inference for Compound Poisson Vector Processes under Infinite Covariance Matrix
2
作者 程从华 《Journal of Donghua University(English Edition)》 CAS 2023年第1期122-126,共5页
The paper discusses the statistical inference problem of the compound Poisson vector process(CPVP)in the domain of attraction of normal law but with infinite covariance matrix.The empirical likelihood(EL)method to con... The paper discusses the statistical inference problem of the compound Poisson vector process(CPVP)in the domain of attraction of normal law but with infinite covariance matrix.The empirical likelihood(EL)method to construct confidence regions for the mean vector has been proposed.It is a generalization from the finite second-order moments to the infinite second-order moments in the domain of attraction of normal law.The log-empirical likelihood ratio statistic for the average number of the CPVP converges to F distribution in distribution when the population is in the domain of attraction of normal law but has infinite covariance matrix.Some simulation results are proposed to illustrate the method of the paper. 展开更多
关键词 compound Poisson vector process(CPVP) infinite covariance matrix domain of attraction of normal law empirical likelihood(EL)
下载PDF
Geomagnetic jerk extraction based on the covariance matrix 被引量:3
3
作者 Feng Yan Jiang Yun-Shan +3 位作者 Gu Jia-Lin Xu Fan Jiang Yi Liu Shuang 《Applied Geophysics》 SCIE CSCD 2019年第2期153-159,252,共8页
We normalize data from 43 Chinese observatories and select data from ten Chinese observatories with most continuous records to assess the secular variations(SVs)and geomagnetic jerks by calculating the deviations betw... We normalize data from 43 Chinese observatories and select data from ten Chinese observatories with most continuous records to assess the secular variations(SVs)and geomagnetic jerks by calculating the deviations between annual observed and CHAOS-6 model monthly means.The variations in the north,east,and vertical eigendirections are studied by using the covariance matrix of the residuals,and we find that the vertical direction is strongly affected by magnetospheric ring currents.To obtain noise-free data,we rely on the covariance matrix of the residuals to remove the noise contributions from the largest eigenvalue or vectors owing to ring currents.Finally,we compare the data from the ten Chinese observatories to seven European observatories.Clearly,the covariance matrix method can simulate the SVs of Dst,the jerk of the northward component in 2014 and that of the eastward component in 2003.5 in China are highly agree with that of Vertically downward component in Europe,compare to CHAOS-6,covariance matrix method can show more details of SVs. 展开更多
关键词 Geomagnetic field secular variation covariance matrix JERK CHAOS-6
下载PDF
Fast and accurate covariance matrix reconstruction for adaptive beamforming using Gauss-Legendre quadrature 被引量:4
4
作者 LIU Shuai ZHANG Xue +2 位作者 YAN Fenggang WANG Jun JIN Ming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期38-43,共6页
Most of the reconstruction-based robust adaptive beamforming(RAB)algorithms require the covariance matrix reconstruction(CMR)by high-complexity integral computation.A Gauss-Legendre quadrature(GLQ)method with the high... Most of the reconstruction-based robust adaptive beamforming(RAB)algorithms require the covariance matrix reconstruction(CMR)by high-complexity integral computation.A Gauss-Legendre quadrature(GLQ)method with the highest algebraic precision in the interpolation-type quadrature is proposed to reduce the complexity.The interference angular sector in RAB is regarded as the GLQ integral range,and the zeros of the threeorder Legendre orthogonal polynomial is selected as the GLQ nodes.Consequently,the CMR can be efficiently obtained by simple summation with respect to the three GLQ nodes without integral.The new method has significantly reduced the complexity as compared to most state-of-the-art reconstruction-based RAB techniques,and it is able to provide the similar performance close to the optimal.These advantages are verified by numerical simulations. 展开更多
关键词 robust adaptive beamforming(RAB) covariance matrix reconstruction(CMR) Gauss-Legendre quadrature(GLQ) complexity reduction
下载PDF
Coupled Cross-correlation Neural Network Algorithm for Principal Singular Triplet Extraction of a Cross-covariance Matrix 被引量:2
5
作者 Xiaowei Feng Xiangyu Kong Hongguang Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第2期149-156,共8页
This paper proposes a novel coupled neural network learning algorithm to extract the principal singular triplet (PST) of a cross-correlation matrix between two high-dimensional data streams. We firstly introduce a nov... This paper proposes a novel coupled neural network learning algorithm to extract the principal singular triplet (PST) of a cross-correlation matrix between two high-dimensional data streams. We firstly introduce a novel information criterion (NIC), in which the stationary points are singular triplet of the crosscorrelation matrix. Then, based on Newton's method, we obtain a coupled system of ordinary differential equations (ODEs) from the NIC. The ODEs have the same equilibria as the gradient of NIC, however, only the first PST of the system is stable (which is also the desired solution), and all others are (unstable) saddle points. Based on the system, we finally obtain a fast and stable algorithm for PST extraction. The proposed algorithm can solve the speed-stability problem that plagues most noncoupled learning rules. Moreover, the proposed algorithm can also be used to extract multiple PSTs effectively by using sequential method. © 2014 Chinese Association of Automation. 展开更多
关键词 Clustering algorithms covariance matrix Data mining Differential equations EXTRACTION Learning algorithms Negative impedance converters Newton Raphson method Ordinary differential equations Singular value decomposition
下载PDF
AN IMPROVED SAR-GMTI METHOD BASED ON EIGEN-DECOMPOSITION OF THE SAMPLE COVARIANCE MATRIX 被引量:1
6
作者 Tian Bin Zhu Daiyin Zhu Zhaoda 《Journal of Electronics(China)》 2010年第3期382-390,共9页
An improved two-channel Synthetic Aperture Radar Ground Moving Target Indication (SAR-GMTI) method based on eigen-decomposition of the covariance matrix is investigated. Based on the joint Probability Density Function... An improved two-channel Synthetic Aperture Radar Ground Moving Target Indication (SAR-GMTI) method based on eigen-decomposition of the covariance matrix is investigated. Based on the joint Probability Density Function (PDF) of the Along-Track Interferometric (ATI) phase and the similarity between the two SAR complex images, a novel ellipse detector is presented and is applied to the indication of ground moving targets. We derive its statistics and analyze the performance of detection process in detail. Compared with the approach using the ATI phase, the ellipse detector has a better performance of detection in homogenous clutter. Numerical experiments on simulated data are presented to validate the improved performance of the ellipse detector with respect to the ATI phase approach. Finally, the detection capability of the proposed method is demonstrated by measured SAR data. 展开更多
关键词 Ground moving target indication Sample covariance matrix Eigen-decomposition Ellipse detector
下载PDF
IMPROVED ESTIMATES OF THE COVARIANCE MATRIX IN GENERAL LINEAR MIXED MODELS
7
作者 叶仁道 王松桂 《Acta Mathematica Scientia》 SCIE CSCD 2010年第4期1115-1124,共10页
In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic ... In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic mean, respectively, are proposed. It is shown that these new estimators dominate the unbiased estimator under the squared error loss function. Finally, some simulation results to compare the performance of the proposed estimators with that of the unbiased estimator are reported. The simulation results indicate that these new shrinkage estimators provide a substantial improvement in risk under most situations. 展开更多
关键词 covariance matrix shrinkage estimator linear mixed model EIGENVALUE
下载PDF
Two Stage Estimation and Its Covariance Matrix in Multivariate Seemingly Unrelated Regression System
8
作者 WANG Shi-qing YANG qiao LIU fa-gui 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第3期397-401,共5页
Multivariate seemingly unrelated regression system is raised first and the two stage estimation and its covariance matrix are given. The results of the literatures[1-5] are extended in this paper.
关键词 multivariate seemingly unrelated regression system two stage estimation covariance matrix unrestricted estimator
下载PDF
Covariance Matrix Learning Differential Evolution Algorithm Based on Correlation
9
作者 Sainan Yuan Quanxi Feng 《International Journal of Intelligence Science》 2021年第1期17-30,共14页
Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;"&g... Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> the search move in a more favorable direction. In order to obtain more accurate information about the function shape, this paper propose</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> <span style="font-family:Verdana;">covariance</span><span style="font-family:Verdana;"> matrix learning differential evolution algorithm based on correlation (denoted as RCLDE)</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">to improve the search efficiency of the algorithm. First, a hybrid mutation strategy is designed to balance the diversity and convergence of the population;secondly, the covariance learning matrix is constructed by selecting the individual with the less correlation;then, a comprehensive learning mechanism is comprehensively designed by two covariance matrix learning mechanisms based on the principle of probability. Finally,</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">the algorithm is tested on the CEC2005, and the experimental results are compared with other effective differential evolution algorithms. The experimental results show that the algorithm proposed in this paper is </span><span style="font-family:Verdana;">an effective algorithm</span><span style="font-family:Verdana;">.</span></span> 展开更多
关键词 Differential Evolution Algorithm CORRELATION covariance matrix Parameter Self-Adaptive Technique
下载PDF
On convergence of covariance matrix of empirical Bayes hyper-parameter estimator
10
作者 Yue Ju Biqiang Mu Tianshi Chen 《Control Theory and Technology》 EI CSCD 2024年第2期149-162,共14页
Regularized system identification has become the research frontier of system identification in the past decade.One related core subject is to study the convergence properties of various hyper-parameter estimators as t... Regularized system identification has become the research frontier of system identification in the past decade.One related core subject is to study the convergence properties of various hyper-parameter estimators as the sample size goes to infinity.In this paper,we consider one commonly used hyper-parameter estimator,the empirical Bayes(EB).Its convergence in distribution has been studied,and the explicit expression of the covariance matrix of its limiting distribution has been given.However,what we are truly interested in are factors contained in the covariance matrix of the EB hyper-parameter estimator,and then,the convergence of its covariance matrix to that of its limiting distribution is required.In general,the convergence in distribution of a sequence of random variables does not necessarily guarantee the convergence of its covariance matrix.Thus,the derivation of such convergence is a necessary complement to our theoretical analysis about factors that influence the convergence properties of the EB hyper-parameter estimator.In this paper,we consider the regularized finite impulse response(FIR)model estimation with deterministic inputs,and show that the covariance matrix of the EB hyper-parameter estimator converges to that of its limiting distribution.Moreover,we run numerical simulations to demonstrate the efficacy of ourtheoretical results. 展开更多
关键词 Regularized system identification Hyper-parameter estimator Empirical Bayes Convergence of covariance matrix
原文传递
Aberration correction for multiphoton microscopy using covariance matrix adaptation evolution strategy 被引量:1
11
作者 王科 郑磊 +8 位作者 秦梦圆 张万剑 邓想全 仝申 程慧 黄杰 钟金成 张颖娴 邱娉 《Chinese Optics Letters》 SCIE EI CAS CSCD 2023年第5期88-93,共6页
Multiphoton microscopy is the enabling tool for biomedical research,but the aberrations of biological tissues have limited its imaging performance.Adaptive optics(AO)has been developed to partially overcome aberration... Multiphoton microscopy is the enabling tool for biomedical research,but the aberrations of biological tissues have limited its imaging performance.Adaptive optics(AO)has been developed to partially overcome aberration to restore imaging performance.For indirect AO,algorithm is the key to its successful implementation.Here,based on the fact that indirect AO has an analogy to the black-box optimization problem,we successfully apply the covariance matrix adaptation evolution strategy(CMA-ES)used in the latter,to indirect AO in multiphoton microscopy(MPM).Compared with the traditional genetic algorithm(GA),our algorithm has a greater improvement in convergence speed and convergence accuracy,which provides the possibility of realizing real-time dynamic aberration correction for deep in vivo biological tissues. 展开更多
关键词 multiphoton microscopy 1700-nm window adaptive optics covariance matrix adaptation evolution strategy
原文传递
Optimal Estimation of High-Dimensional Covariance Matrices with Missing and Noisy Data
12
作者 Meiyin Wang Wanzhou Ye 《Advances in Pure Mathematics》 2024年第4期214-227,共14页
The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based o... The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method. 展开更多
关键词 High-Dimensional covariance matrix Missing Data Sub-Gaussian Noise Optimal Estimation
下载PDF
New correlated MIMO radar covariance matrix design with low side lobe levels and much lower complexity 被引量:3
13
作者 Roholah VAHDANI Hossein KHALEGHI BIZAKI Mohsen FALLAH JOSHAGHANI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第1期327-335,共9页
In this paper,a new correlated covariance matrix for Multi-Input Multi-Output(MIMO)radar is proposed,which has lower Side Lobe Levels(SLLs)compared to the new covariance matrix designs and the well-known multi-antenna... In this paper,a new correlated covariance matrix for Multi-Input Multi-Output(MIMO)radar is proposed,which has lower Side Lobe Levels(SLLs)compared to the new covariance matrix designs and the well-known multi-antenna radar designs including phased-array,MIMO radar and phased-MIMO radar schemes.It is shown that Binary Phased-Shift Keying(BPSK)waveforms that have constant envelope can be used in a closed-form to realize the proposed covariance matrix.Therefore,there is no need to deploy different types of radio amplifiers in the transmitter which will reduce the cost,considerably.The proposed design allows the same transmit power from each antenna in contrast to the phased-MIMO radar.Moreover,the proposed covariance matrix is full-rank and has the same capability as MIMO radar to identify more targets,simultaneously.Performance of the proposed transmit covariance matrix including receive beampattern and output Signal-to-Interference plus Noise Ratio(SINR)is simulated,which validates analytical results. 展开更多
关键词 Beampattern Correlated MIMO radar covariance matrix design Sidelobe level Signal-to-Interference Plus Noise Ratio(SINR)
原文传递
Sparse and Low-Rank Covariance Matrix Estimation 被引量:2
14
作者 Sheng-Long Zhou Nai-Hua Xiu +1 位作者 Zi-Yan Luo Ling-Chen Kong 《Journal of the Operations Research Society of China》 EI CSCD 2015年第2期231-250,共20页
This paper aims at achieving a simultaneously sparse and low-rank estimator from the semidefinite population covariance matrices.We first benefit from a convex optimization which develops l1-norm penalty to encourage ... This paper aims at achieving a simultaneously sparse and low-rank estimator from the semidefinite population covariance matrices.We first benefit from a convex optimization which develops l1-norm penalty to encourage the sparsity and nuclear norm to favor the low-rank property.For the proposed estimator,we then prove that with high probability,the Frobenius norm of the estimation rate can be of order O(√((slgg p)/n))under a mild case,where s and p denote the number of nonzero entries and the dimension of the population covariance,respectively and n notes the sample capacity.Finally,an efficient alternating direction method of multipliers with global convergence is proposed to tackle this problem,and merits of the approach are also illustrated by practicing numerical simulations. 展开更多
关键词 covariance matrix Sparse and low-rank estimator Estimation rate Alternating direction method of multipliers
原文传递
Experimental measurement of covariance matrix of two-mode entangled state 被引量:2
15
作者 YU XuDong LI Wei +1 位作者 JIN YuanBin ZHANG Jing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第5期875-879,共5页
A two-mode entangled state was generated experimentally through mixing two squeezed lights from two optical parametric amplifiers on a 50/50 beam splitter.The entangled beams were measured by means of two pairs of bal... A two-mode entangled state was generated experimentally through mixing two squeezed lights from two optical parametric amplifiers on a 50/50 beam splitter.The entangled beams were measured by means of two pairs of balanced homodyne detection systems respectively.The relative phases between the local beams and the detected beams can be locked by using the optical phase modulation technique.The covariance matrix of the two-mode entangled state was obtained when the relative phase of the local beam and the detected beam in one homodyne detection system is locked and the other is scanned.This method provides a way by which one can extract the covariance matrix of any selected quadrature components of two-mode Gaussian state. 展开更多
关键词 optical parametric amplifier Gaussian entangled state covariance matrix
原文传递
A New Estimator of Covariance Matrix via Partial Iwasawa Coordinates 被引量:1
16
作者 XU Kai 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第5期1173-1188,共16页
This paper is concerned with tile proOlenl or improving hue ~lma^u~ u~ under Stein's loss. By the partial Iwasawa coordinates of covariance matrix, the corresponding risk can be split into three parts. One can use th... This paper is concerned with tile proOlenl or improving hue ~lma^u~ u~ under Stein's loss. By the partial Iwasawa coordinates of covariance matrix, the corresponding risk can be split into three parts. One can use the information in the weighted matrix of weighted quadratic loss to improve one part of risk. However, this paper indirectly takes advantage of the information in the sample mean and reuses Iwasawa coordinates to improve the rest of risk. It is worth mentioning that the process above can be repeated. Finally, a Monte Carlo simulation study is carried out to verify the theoretical results. 展开更多
关键词 covariance matrix James-Stein estimator partial Iwasawa coordinates Stein's loss weighted quadratic loss
原文传递
IMPROVED ANOVAE OF THE COVARIANCE MATRIX IN GENERAL LINEAR MIXED MODELS 被引量:1
17
作者 Rendao YE Tiefeng MA Songgui WANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第1期176-185,共10页
In this paper, the problem of estimating the covariance matrix in general linear mixed models is considered. A new class of estimators is proposed. It is shown that this new estimator dominates the analysis of varianc... In this paper, the problem of estimating the covariance matrix in general linear mixed models is considered. A new class of estimators is proposed. It is shown that this new estimator dominates the analysis of variance estimate under two squared loss functions. Finally, some simulation results to compare the performance of the proposed estimator with that of the analysis of variance estimate are reported. The simulation results indicate that this new estimator provides a substantial improvement in risk under most situations. 展开更多
关键词 ANOVAE covariance matrix linear mixed model loss function.
原文传递
High dimensional covariance matrix estimation using multi-factor models from incomplete information 被引量:1
18
作者 XU FangFang HUANG JianChao WEN ZaiWen 《Science China Mathematics》 SCIE CSCD 2015年第4期829-844,共16页
Covariance matrix plays an important role in risk management, asset pricing, and portfolio allocation. Covariance matrix estimation becomes challenging when the dimensionality is comparable or much larger than the sam... Covariance matrix plays an important role in risk management, asset pricing, and portfolio allocation. Covariance matrix estimation becomes challenging when the dimensionality is comparable or much larger than the sample size. A widely used approach for reducing dimensionality is based on multi-factor models. Although it has been well studied and quite successful in many applications, the quality of the estimated covariance matrix is often degraded due to a nontrivial amount of missing data in the factor matrix for both technical and cost reasons. Since the factor matrix is only approximately low rank or even has full rank, existing matrix completion algorithms are not applicable. We consider a new matrix completion paradigm using the factor models directly and apply the alternating direction method of multipliers for the recovery. Numerical experiments show that the nuclear-norm matrix completion approaches are not suitable but our proposed models and algorithms are promising. 展开更多
关键词 high dimensional covariance matrix estimation multi-factor model matrix completion alternating direction method of multipliers
原文传递
Frequency-invariant robust adaptive beamforming based on interference covariance matrix reconstruction 被引量:6
19
作者 FAN Zhan LIANG Guolong 《Chinese Journal of Acoustics》 2014年第4期359-368,共10页
Consider the problems of frequency-invariant beampattern optimization and robustness in broadband beamforming.Firstly,a global optimization algorithm,which is based on phase compensation of the array manifolds,is used... Consider the problems of frequency-invariant beampattern optimization and robustness in broadband beamforming.Firstly,a global optimization algorithm,which is based on phase compensation of the array manifolds,is used to construct the frequency-invariant beampattern.Compared with some methods presented recently,the proposed algorithm is not only available to get the global optimal solution,but also simple for physical realization.Meanwhile,a robust adaptive broadband beamforming algorithm is also derived by reconstructing the covariance matrix.The essence of the proposed algorithm is to estimate the space-frequency spectrum using Capon estimator firstly,then integrate over a region separated from the desired signal direction to reconstruct the interference-plus-noise covariance matrix,and finally caleulate the adaptive beamformer weights with the reconstructed matrix.The design of beamformer is formulated as a convex optimization problem to be solved.Simulation results show that the performance of the proposed algorithm is almost always close to the optimal value across a wide range of signal to noise ratios. 展开更多
关键词 Frequency-invariant robust adaptive beamforming based on interference covariance matrix reconstruction
原文传递
Sphericity and Identity Test for High-dimensional Covariance Matrix Using Random Matrix Theory
20
作者 Shou-cheng YUAN Jie ZHOU +1 位作者 Jian-xin PAN Jie-qiong SHEN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2021年第2期214-231,共18页
This paper addresses the issue of testing sphericity and identity of high-dimensional population covariance matrix when the data dimension exceeds the sample size.The central limit theorem of the first four moments of... This paper addresses the issue of testing sphericity and identity of high-dimensional population covariance matrix when the data dimension exceeds the sample size.The central limit theorem of the first four moments of eigenvalues of sample covariance matrix is derived using random matrix theory for generally distributed populations.Further,some desirable asymptotic properties of the proposed test statistics are provided under the null hypothesis as data dimension and sample size both tend to infinity.Simulations show that the proposed tests have a greater power than existing methods for the spiked covariance model. 展开更多
关键词 sphericity test identity test high-dimensional covariance matrix spiked model spectral distribution
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部