Mobile and Internet network coverage plays an important role in digital transformation and the exploitation of new services. The evolution of mobile networks from the first generation (1G) to the 5th generation is sti...Mobile and Internet network coverage plays an important role in digital transformation and the exploitation of new services. The evolution of mobile networks from the first generation (1G) to the 5th generation is still a long process. 2G networks have developed the messaging service, which complements the already operational voice service. 2G technology has rapidly progressed to the third generation (3G), incorporating multimedia data transmission techniques. It then progressed to fourth generation (4G) and LTE (Long Term Evolution), increasing the transmission speed to improve 3G. Currently, developed countries have already moved to 5G. In developing countries, including Burundi, a member of the East African Community (ECA) where more than 80% are connected to 2G technologies, 40% are connected to the 3G network and 25% to the 4G network and are not yet connected to the 5G network and then still a process. The objective of this article is to analyze the coverage of 2G, 3G and 4G networks in Burundi. This analysis will make it possible to identify possible deficits in order to reduce the digital divide between connected urban areas and remote rural areas. Furthermore, this analysis will draw the attention of decision-makers to the need to deploy networks and coverage to allow the population to access mobile and Internet services and thus enable the digitalization of the population. Finally, this article shows the level of coverage, the digital divide and an overview of the deployment of base stations (BTS) throughout the country to promote the transformation and digital inclusion of services.展开更多
Target coverage and continuous connection are the major recital factors for Wireless Sensor Network(WSN).Several previous research works studied various algorithms for target coverage difficulties;however they lacked ...Target coverage and continuous connection are the major recital factors for Wireless Sensor Network(WSN).Several previous research works studied various algorithms for target coverage difficulties;however they lacked to focus on improving the network’s life time in terms of energy.This research work mainly focuses on target coverage and area coverage problem in a heterogeneous WSN with increased network lifetime.The dynamic behavior of the target nodes is unpredictable,because the target nodes may move at any time in any direction of the network.Thus,target coverage becomes a major problem in WSN and its applications.To solve the issue,this research work is motivated to design and develop an intelligent model named Distributed Flexible Wheel Chain(DFWC)model for efficient target coverage and area coverage in WSN applications.More number of target nodes is covered by minimum number of sensor nodes that can improve energy efficiency.To be specific,DFWC motivated at obtaining lesser connected target coverage,where every target is available in the monitoring area is covered by a smaller number of sensor nodes.The simulation results show that the proposed DFWC model outperforms the existing models with improved performance.展开更多
Ambient Assisted Living(AAL) is becoming an important research field. Many technologies have emerged related with pervasive computing vision, which can give support for AAL. One of the most reliable approaches is base...Ambient Assisted Living(AAL) is becoming an important research field. Many technologies have emerged related with pervasive computing vision, which can give support for AAL. One of the most reliable approaches is based on wireless sensor networks(WSNs). In this paper, we propose a coverage-aware unequal clustering protocol with load separation(CUCPLS) for data gathering of AAL applications based on WSNs. Firstly, the coverage overlap factor for nodes is introduced that accounts for the degree of target nodes covered. In addition, to balance the intra-cluster and inter-cluster energy consumptions, different competition radiuses of CHs are computed theoretically in different rings, and smaller clusters are formed near the sink. Moreover, two CHs are selected in each cluster for load separation to alleviate the substantial energy consumption difference between a single CH and its member nodes. Furthermore, a backoff waiting time is adopted during the selection of the two CHs to reduce the number of control messages employed. Simulation results demonstrate that the CUCPLS not only can achieve better coverage performance, but also balance the energy consumption of a network and prolong network lifetime.展开更多
For three consecutive years, ZTE has been the fastest growing optical network vendor in the world. Our WDM equipment gives extra high transmission capacity over long distances at the same time as optimizing your optic...For three consecutive years, ZTE has been the fastest growing optical network vendor in the world. Our WDM equipment gives extra high transmission capacity over long distances at the same time as optimizing your optical fibre resources.展开更多
Working as aerial base stations,mobile robotic agents can be formed as a wireless robotic network to provide network services for on-ground mobile devices in a target area.Herein,a challenging issue is how to deploy t...Working as aerial base stations,mobile robotic agents can be formed as a wireless robotic network to provide network services for on-ground mobile devices in a target area.Herein,a challenging issue is how to deploy these mobile robotic agents to provide network services with good quality for more users,while considering the mobility of on-ground devices.In this paper,to solve this issue,we decouple the coverage problem into the vertical dimension and the horizontal dimension without any loss of optimization and introduce the network coverage model with maximum coverage range.Then,we propose a hybrid deployment algorithm based on the improved quick artificial bee colony.The algorithm is composed of a centralized deployment algorithm and a distributed one.The proposed deployment algorithm deploy a given number of mobile robotic agents to provide network services for the on-ground devices that are independent and identically distributed.Simulation results have demonstrated that the proposed algorithm deploys agents appropriately to cover more ground area and provide better coverage uniformity.展开更多
Barrier coverage of wireless sensor networks is an important issue in the detection of intruders who are attempting to cross a region of interest.However,in certain applications,barrier coverage cannot be satisfied af...Barrier coverage of wireless sensor networks is an important issue in the detection of intruders who are attempting to cross a region of interest.However,in certain applications,barrier coverage cannot be satisfied after random deployment.In this paper,we study how mobile sensors can be efficiently relocated to achieve k-barrier coverage.In particular,two problems are studied:relocation of sensors with minimum number of mobile sensors and formation of k-barrier coverage with minimum energy cost.These two problems were formulated as 0–1 integer linear programming(ILP).The formulation is computationally intractable because of integrality and complicated constraints.Therefore,we relax the integrality and complicated constraints of the formulation and construct a special model known as RELAX-RSMN with a totally unimodular constraint coefficient matrix to solve the relaxed 0–1 ILP rapidly through linear programming.Theoretical analysis and simulation were performed to verify the effectiveness of our approach.展开更多
Water quality sensor networks are promising tools for the exploration of oceans.Some key areas need to be monitored effectively.Water quality sensors are deployed randomly or uniformly,however,and understanding how to...Water quality sensor networks are promising tools for the exploration of oceans.Some key areas need to be monitored effectively.Water quality sensors are deployed randomly or uniformly,however,and understanding how to deploy sensor nodes reasonably and realize effective monitoring of key areas on the basis of monitoring the whole area is an urgent problem to be solved.Additionally,energy is limited in water quality sensor networks.When moving sensor nodes,we should extend the life cycle of the sensor networks as much as possible.In this study,sensor nodes in non-key monitored areas are moved to key areas.First,we used the concentric circle method to determine the mobile sensor nodes and the target locations.Then,we determined the relationship between the mobile sensor nodes and the target locations according to the energy matrix.Finally,we calculated the shortest moving path according to the Floyd algorithm,which realizes the redeployment of the key monitored area.The simulation results showed that,compared with the method of direct movement,the proposed method can effectively reduce the energy consumption and save the network adjustment time based on the effective coverage of key areas.展开更多
The ability of the monolithic satellite,satellite orbit(especially GEO),and radio resource are very limited,so the development of distributed satellite cluster network(DSCN) receives more and more worldwide attention....The ability of the monolithic satellite,satellite orbit(especially GEO),and radio resource are very limited,so the development of distributed satellite cluster network(DSCN) receives more and more worldwide attention.In this paper,DSCN is surveyed and the study status of DSCN architecture design is summarized.The formation flying of spacecrafts,reconfiguration,networking,and applied research on distributed satellite spacecraft are described in detail.The DSCN will provide a great technology innovation for space information network,satellite communications,satellite navigation,deep space exploration,and space remote sensing.In addition,this paper points out future trends of the DSCN development.展开更多
In this paper, a domain in a cube is called a coverage hole if it is not covered by the largest component of the random geometric graph in this cube. We obtain asymptotic properties of the size of the largest coverage...In this paper, a domain in a cube is called a coverage hole if it is not covered by the largest component of the random geometric graph in this cube. We obtain asymptotic properties of the size of the largest coverage hole in the cube. In addition, we give an exponentially decaying tail bound for the probability that a line with length s do not intersect with the coverage of the infinite component of continuum percolation. These results have applications in communication networks and especially in wireless ad-hoc sensor networks.展开更多
Because of the low convergence accuracy of the basic Harris Hawks algorithm,which quickly falls into the local optimal,a Harris Hawks algorithm combining tuna swarm algorithm and differential mutation strategy(TDHHO)i...Because of the low convergence accuracy of the basic Harris Hawks algorithm,which quickly falls into the local optimal,a Harris Hawks algorithm combining tuna swarm algorithm and differential mutation strategy(TDHHO)is proposed.The escape energy factor of nonlinear periodic energy decline balances the ability of global exploration and regional development.The parabolic foraging approach of the tuna swarm algorithm is introduced to enhance the global exploration ability of the algorithm and accelerate the convergence speed.The difference variation strategy is used to mutate the individual position and calculate the fitness,and the fitness of the original individual position is compared.The greedy technique is used to select the one with better fitness of the objective function,which increases the diversity of the population and improves the possibility of the algorithm jumping out of the local extreme value.The test function tests the TDHHO algorithm,and compared with other optimization algorithms,the experimental results show that the convergence speed and optimization accuracy of the improved Harris Hawks are improved.Finally,the enhanced Harris Hawks algorithm is applied to engineering optimization and wireless sensor networks(WSN)coverage optimization problems,and the feasibility of the TDHHO algorithm in practical application is further verified.展开更多
文摘Mobile and Internet network coverage plays an important role in digital transformation and the exploitation of new services. The evolution of mobile networks from the first generation (1G) to the 5th generation is still a long process. 2G networks have developed the messaging service, which complements the already operational voice service. 2G technology has rapidly progressed to the third generation (3G), incorporating multimedia data transmission techniques. It then progressed to fourth generation (4G) and LTE (Long Term Evolution), increasing the transmission speed to improve 3G. Currently, developed countries have already moved to 5G. In developing countries, including Burundi, a member of the East African Community (ECA) where more than 80% are connected to 2G technologies, 40% are connected to the 3G network and 25% to the 4G network and are not yet connected to the 5G network and then still a process. The objective of this article is to analyze the coverage of 2G, 3G and 4G networks in Burundi. This analysis will make it possible to identify possible deficits in order to reduce the digital divide between connected urban areas and remote rural areas. Furthermore, this analysis will draw the attention of decision-makers to the need to deploy networks and coverage to allow the population to access mobile and Internet services and thus enable the digitalization of the population. Finally, this article shows the level of coverage, the digital divide and an overview of the deployment of base stations (BTS) throughout the country to promote the transformation and digital inclusion of services.
文摘Target coverage and continuous connection are the major recital factors for Wireless Sensor Network(WSN).Several previous research works studied various algorithms for target coverage difficulties;however they lacked to focus on improving the network’s life time in terms of energy.This research work mainly focuses on target coverage and area coverage problem in a heterogeneous WSN with increased network lifetime.The dynamic behavior of the target nodes is unpredictable,because the target nodes may move at any time in any direction of the network.Thus,target coverage becomes a major problem in WSN and its applications.To solve the issue,this research work is motivated to design and develop an intelligent model named Distributed Flexible Wheel Chain(DFWC)model for efficient target coverage and area coverage in WSN applications.More number of target nodes is covered by minimum number of sensor nodes that can improve energy efficiency.To be specific,DFWC motivated at obtaining lesser connected target coverage,where every target is available in the monitoring area is covered by a smaller number of sensor nodes.The simulation results show that the proposed DFWC model outperforms the existing models with improved performance.
基金supported by the National Nature Science Foundation of China (61170169, 61170168)
文摘Ambient Assisted Living(AAL) is becoming an important research field. Many technologies have emerged related with pervasive computing vision, which can give support for AAL. One of the most reliable approaches is based on wireless sensor networks(WSNs). In this paper, we propose a coverage-aware unequal clustering protocol with load separation(CUCPLS) for data gathering of AAL applications based on WSNs. Firstly, the coverage overlap factor for nodes is introduced that accounts for the degree of target nodes covered. In addition, to balance the intra-cluster and inter-cluster energy consumptions, different competition radiuses of CHs are computed theoretically in different rings, and smaller clusters are formed near the sink. Moreover, two CHs are selected in each cluster for load separation to alleviate the substantial energy consumption difference between a single CH and its member nodes. Furthermore, a backoff waiting time is adopted during the selection of the two CHs to reduce the number of control messages employed. Simulation results demonstrate that the CUCPLS not only can achieve better coverage performance, but also balance the energy consumption of a network and prolong network lifetime.
文摘For three consecutive years, ZTE has been the fastest growing optical network vendor in the world. Our WDM equipment gives extra high transmission capacity over long distances at the same time as optimizing your optical fibre resources.
基金supported by the National Natural Science Foundation of China(No.62102280)Fundamental Research Program of Shanxi Province(No.20210302124167)+1 种基金Key Research and Development Program of Shanxi Province(No.202102020101001)National Major Scientific Research Instrument Development Project of China(No.62027819).
文摘Working as aerial base stations,mobile robotic agents can be formed as a wireless robotic network to provide network services for on-ground mobile devices in a target area.Herein,a challenging issue is how to deploy these mobile robotic agents to provide network services with good quality for more users,while considering the mobility of on-ground devices.In this paper,to solve this issue,we decouple the coverage problem into the vertical dimension and the horizontal dimension without any loss of optimization and introduce the network coverage model with maximum coverage range.Then,we propose a hybrid deployment algorithm based on the improved quick artificial bee colony.The algorithm is composed of a centralized deployment algorithm and a distributed one.The proposed deployment algorithm deploy a given number of mobile robotic agents to provide network services for the on-ground devices that are independent and identically distributed.Simulation results have demonstrated that the proposed algorithm deploys agents appropriately to cover more ground area and provide better coverage uniformity.
基金supported by the NSFC(U1536206,61232016,U1405254,61373133,61502242,71401176)BK20150925the PAPD fund
文摘Barrier coverage of wireless sensor networks is an important issue in the detection of intruders who are attempting to cross a region of interest.However,in certain applications,barrier coverage cannot be satisfied after random deployment.In this paper,we study how mobile sensors can be efficiently relocated to achieve k-barrier coverage.In particular,two problems are studied:relocation of sensors with minimum number of mobile sensors and formation of k-barrier coverage with minimum energy cost.These two problems were formulated as 0–1 integer linear programming(ILP).The formulation is computationally intractable because of integrality and complicated constraints.Therefore,we relax the integrality and complicated constraints of the formulation and construct a special model known as RELAX-RSMN with a totally unimodular constraint coefficient matrix to solve the relaxed 0–1 ILP rapidly through linear programming.Theoretical analysis and simulation were performed to verify the effectiveness of our approach.
基金This research was funded by the National Natural Science Foundation of China(Grant No.61802010)National Social Science Fund of China(Grant No.19BGL184)+1 种基金Beijing Excellent Talent Training Support Project for Young Top-Notch Team(Grant No.2018000026833TD01)and Hundred-Thousand-Ten Thousand Talents Project of Beijing(Grant No.2020A28).
文摘Water quality sensor networks are promising tools for the exploration of oceans.Some key areas need to be monitored effectively.Water quality sensors are deployed randomly or uniformly,however,and understanding how to deploy sensor nodes reasonably and realize effective monitoring of key areas on the basis of monitoring the whole area is an urgent problem to be solved.Additionally,energy is limited in water quality sensor networks.When moving sensor nodes,we should extend the life cycle of the sensor networks as much as possible.In this study,sensor nodes in non-key monitored areas are moved to key areas.First,we used the concentric circle method to determine the mobile sensor nodes and the target locations.Then,we determined the relationship between the mobile sensor nodes and the target locations according to the energy matrix.Finally,we calculated the shortest moving path according to the Floyd algorithm,which realizes the redeployment of the key monitored area.The simulation results showed that,compared with the method of direct movement,the proposed method can effectively reduce the energy consumption and save the network adjustment time based on the effective coverage of key areas.
基金National Natural Science foundations of China(Nos.61032004,91338201,and 61231011)National High Technology Research and Development Program of China(863 Program)(No.2012AA121605)
文摘The ability of the monolithic satellite,satellite orbit(especially GEO),and radio resource are very limited,so the development of distributed satellite cluster network(DSCN) receives more and more worldwide attention.In this paper,DSCN is surveyed and the study status of DSCN architecture design is summarized.The formation flying of spacecrafts,reconfiguration,networking,and applied research on distributed satellite spacecraft are described in detail.The DSCN will provide a great technology innovation for space information network,satellite communications,satellite navigation,deep space exploration,and space remote sensing.In addition,this paper points out future trends of the DSCN development.
基金Supported by the National Natural Science Foundation of China(No.71271204)Knowledge Innovation Program of the Chinese Academy of Sciences(No.kjcx-yw-s7)
文摘In this paper, a domain in a cube is called a coverage hole if it is not covered by the largest component of the random geometric graph in this cube. We obtain asymptotic properties of the size of the largest coverage hole in the cube. In addition, we give an exponentially decaying tail bound for the probability that a line with length s do not intersect with the coverage of the infinite component of continuum percolation. These results have applications in communication networks and especially in wireless ad-hoc sensor networks.
基金Supported by Key Laboratory of Space Active Opto-Electronics Technology of Chinese Academy of Sciences(2021ZDKF4)Shanghai Science and Technology Innovation Action Plan(21S31904200,22S31903700)。
文摘Because of the low convergence accuracy of the basic Harris Hawks algorithm,which quickly falls into the local optimal,a Harris Hawks algorithm combining tuna swarm algorithm and differential mutation strategy(TDHHO)is proposed.The escape energy factor of nonlinear periodic energy decline balances the ability of global exploration and regional development.The parabolic foraging approach of the tuna swarm algorithm is introduced to enhance the global exploration ability of the algorithm and accelerate the convergence speed.The difference variation strategy is used to mutate the individual position and calculate the fitness,and the fitness of the original individual position is compared.The greedy technique is used to select the one with better fitness of the objective function,which increases the diversity of the population and improves the possibility of the algorithm jumping out of the local extreme value.The test function tests the TDHHO algorithm,and compared with other optimization algorithms,the experimental results show that the convergence speed and optimization accuracy of the improved Harris Hawks are improved.Finally,the enhanced Harris Hawks algorithm is applied to engineering optimization and wireless sensor networks(WSN)coverage optimization problems,and the feasibility of the TDHHO algorithm in practical application is further verified.