With the increasing demand for high-purity products,the industrial application of melt crystallization technology has been highly concerned.In this study,the purification process of nitrochlorobenzene binary eutectic ...With the increasing demand for high-purity products,the industrial application of melt crystallization technology has been highly concerned.In this study,the purification process of nitrochlorobenzene binary eutectic system(NBES)and naphthalene–benzothiophene solid solution system(NBSSS)in tower melting crystallizer is analyzed,and a mathematical model of crystallization process is established.The key parameters in terms of feed concentration,crystal bed height,reflux ratio and stirring speed effi-ciency on purification effects were discussed by the established model.The results show that the concentration of p-nitrochlorobenzene was purified from 90.85%to 99.99%,when the crystal bed height is 600 mm,the reflux ratio is 2.5,and the stirring speed is 12 rmin^(-1).The naphthalene concentration is purified from 95.89%to 99.99%,when the crystal bed height is 400 mm,the reflux ratio is 1.43,and the stirring speed is 16 rmin^(-1).The quality of the model is evaluated by the ARD(average relative deviation).The minimum ARD values of the NBES and NBSSS are 2.39%and 5.22%,respectively,indicating the model satisfactorily explains the purification process.展开更多
A laboratory-scale reaction-crystallization process of struvite synthesis from diluted water solution of Mg^2+, NH^+ 4 and PO3- ions was studied. The research covered the tests of two original constructions of conti...A laboratory-scale reaction-crystallization process of struvite synthesis from diluted water solution of Mg^2+, NH^+ 4 and PO3- ions was studied. The research covered the tests of two original constructions of continuous jet-pump Draft Tube Magma (DTM)-type crystallizers with internal circulation of suspension (upward/downward). Interactions between constructional, hydrodynamic and kinetic factors were established and discussed. Nucleation and linear growth rates of struvite crystals were calculated on the basis of population density distribution. Kinetic model of idealized Mixed Suspension Mixed Product Removal (MSMPR) crystallizer considering the size-dependent growth mechanism was applied (Rojkowski hyperbolic equation). For comparison purposes the kinetic data corre- sponded to a simpler, continuous draft tube-type crystallizer equipped with propeller agitator were analyzed. It was concluded that crystal product of larger size was withdrawn from the jet-pump DTM crystallizer of the descending flow of suspension in a mixing chamber.展开更多
This study presents a novel design for a spiral finned crystallizer which is the primary element of progressive freeze concentration(PFC) system, which simplifies the setup of the conventional system. After the crysta...This study presents a novel design for a spiral finned crystallizer which is the primary element of progressive freeze concentration(PFC) system, which simplifies the setup of the conventional system. After the crystallizer has been designed, the research experiments have been conducted and evaluated through a thorough analysis of its performance by developing a mathematical model that can be used to predict the productivity of ice crystal at a range of coolant temperature. The model is developed based on the basic heat transfer equation, and by considering the solution's and the coolant's convective heat transfer coefficient(h) under the forced flow condition.The model's accuracy is verified by making comparison between the ice crystal mass' experimental value and the values predicted by the model. Consequently, the study found that the model helps in enhancing the PFC system.展开更多
The results of struvite reaction crystallization from diluted water solutions of phosphates (V) (0.20 mass% of PO43-) by means of magnesium and ammonium ions are presented. Continuous FB MSZ crystallizer with jet ...The results of struvite reaction crystallization from diluted water solutions of phosphates (V) (0.20 mass% of PO43-) by means of magnesium and ammonium ions are presented. Continuous FB MSZ crystallizer with jet pump driven by compressed air was used. Influence of pH and mean residence time of suspension on the crystal product quality was determined. Increase in pH from 9 to 11 resulted that mean crystal size decreased nearly two-time: from 27.1 to 15.1μm for mean residence time of suspension 900 s. Elongation of this time from 900 to 3,600 s influenced struvite crystal size advantageously-it increased from 27.1 to 41.2 μm at pH 9. From the population density distributions nucleation and growth rates of struvite were calculated based on the simplest SIG model of mass crystallization kinetics in MSMPR crystallizer. Linear growth rate ofstruvite crystals decreased nearly two-time with the increase in environment pH from 9 to 11, and more than 2.5-time with the elongation of mean residence time of crystal suspension in a crystallizer from 900 to 3,600 s from 1.34× 10-8 m/s (pH 9, τ= 900 s) to 2.60×10-9 m/s (pH 11, τ= 3,600 s).展开更多
Reaction crystallization of struvite in water solutions containing 0.20 mass % of phosphate(V) ions by magnesium and ammonium ions addition was investigated experimentally. Process was carried out in DTM type crystall...Reaction crystallization of struvite in water solutions containing 0.20 mass % of phosphate(V) ions by magnesium and ammonium ions addition was investigated experimentally. Process was carried out in DTM type crystallizer with liquid jet pump device in 298 K assuming stoichiometric conditions. Struvite crystals of mean size Lm 5.2-23.0 μm were produced depending on pH (9-11) and mean residence time of suspension in a crystallizer τ (900-3600 s). Under these conditions linear growth rate of struvite crystals (SIG MSMPR kinetic model) decreased 2-time with the increase in pH and 3-time with the elongation of mean residence time of crystal suspension from 7.11×10-9 m/s (pH 9, τ900 s) to 1.65×10-9 m/s (pH 11, τ3600 s). Nucleation rate varied within the 7.9×108-1.8×1010 1/(sm3) limits. Struvite product of maximal linear size exceeded 100 μm with 10 vol. % of < 3 μm fraction corresponded to pH 9 and τ3600 s.展开更多
An enthalpy finite element analysing software is developed. The software can trace the growing process of the slab shell of the crystallizer in the continuous casting and can calculate the surface temperature distrib...An enthalpy finite element analysing software is developed. The software can trace the growing process of the slab shell of the crystallizer in the continuous casting and can calculate the surface temperature distribution. By this, the operator can know the solidifying state and the exit thickness of the cast slab's each section in the crystallizer. The software has great significance in production and practice.展开更多
The bench-scale cooling crystallization for ternary solution of L-ascorbic acid (Vitamin C) was studied.The solid-liquid phase diagram of Vitamin C-water-ethanol system was obtained on the basis of differential scanni...The bench-scale cooling crystallization for ternary solution of L-ascorbic acid (Vitamin C) was studied.The solid-liquid phase diagram of Vitamin C-water-ethanol system was obtained on the basis of differential scanning calorimeter (DSC) curves. The heat of crystallization of Vitamin C was calculated with the aid of quantitative analysis. According to the population balance equation under unsteady state, the rates of nucleation and growth were determined. The parameters of crystallization kinetics equations were estimated by regression of experimental data. Crystal morphology and size were determined with x-ray diffraction and TA Ⅱ Coulter Counter.展开更多
A wastewater evaporation-desalination pretreatment method was introduced to remove the Na+ and K+ salts in volatile organic compounds (VOCs) wastewater before it was fed into the incinerator. VOCs in the wastewater we...A wastewater evaporation-desalination pretreatment method was introduced to remove the Na+ and K+ salts in volatile organic compounds (VOCs) wastewater before it was fed into the incinerator. VOCs in the wastewater were volatilized in the evaporation system and then the vapor was combusted in an incinerator. Simulated phenol wastewater containing sodium chloride was evaporated and concentrated and sodium chloride was crystallized in different parameters. The experimental results showed that the higher initial concentration of sodium chloride increases the ratio of volatilization of VOCs, which was due to the effect of “salting out” (a decrease in the solubility of the nonelectrolyte in the solution, or more rigorously, an increase in its activity coef-ficient, caused by the salt addition (Furter and Cook, 1967)). When evaporation speed was increased from 1.67 ml/min to 2.73 ml/min, the total removal coefficient of sodium chloride was about 99.88%~99.99%. This pretreatment procedure eliminates the slag phenomenon caused by Na+ and K+ salts during wastewater incineration, so the incinerator could operate continuously, and the wastewater evaporation could increase the heat value of wastewater, and the operation cost would be reduced.展开更多
The reactive crystallization process of dexamethasone sodium phosphate was investigated in a continuous mixed-suspension, mixed-product-removal(MSMPR) crystallizer. Analyzing experimental data, it was found that the g...The reactive crystallization process of dexamethasone sodium phosphate was investigated in a continuous mixed-suspension, mixed-product-removal(MSMPR) crystallizer. Analyzing experimental data, it was found that the growth of product crystal was size-dependent. The Bransom, CR, ASL, M J2 and M J3 size-dependent growth models were discussed in details. Using experimental steady state population density data of dexamethasone sodium phosphate, parameters of five size-dependent growth models were determined by the method of non-linear least-squares. By comparison of experimental population density and linear growth rate data with those obtained from the five size-dependent growth models, it was found that the MJ3 model predicts the growth more accurately than do the other four models. Based on the theory of population balance, the crystal nucleation and growth rate equations of dexamethasone sodium phosphate were determined by non-linear regression method. The effects of different operation parameters such as supersaturation, magma density and temperature on the quality of product crystal were also discussed, and the optimal operation conditions were derived.展开更多
Modeling the kinetics of the preparing process is necessary to produce a product with the appropriate particle properties and minimum production cost.Owing to the lackness of crystal size distributor (CSD) informati...Modeling the kinetics of the preparing process is necessary to produce a product with the appropriate particle properties and minimum production cost.Owing to the lackness of crystal size distributor (CSD) information,however,solvent-mediated phase transformation encounters difficulty in modeling the kinetics as compared to solution crystallization.Consequently,a model was established by making the product CSD to move along by horizontal translation to obtain the CSDs of the stable phase in the process of transformation.Then the moment method was used to solve the popular balance equation,and the least square nonlinear regression method was applied to estimate the kinetics parameters.The model has been successfully used to simulate the transformation of CaSO4?2H2O to α-CaSO4?1/2H2O in an isothermal seeded batch crystallizer with different stirring speeds,and it is beneficial to producing high performance α-CaSO4?1/2H2O crystals which have the right particle characteristics.展开更多
Crystallization is used to produce vast quantities of materials. For several applications, continuous crystallization is often the best operation mode because it is able to reproduce better crystal size distributions ...Crystallization is used to produce vast quantities of materials. For several applications, continuous crystallization is often the best operation mode because it is able to reproduce better crystal size distributions than other operation modes. Nonlinear oscillation in continuous industrial crystallization processes is a well-known phenomenon leading to practical difficulties such that control actions are necessary. Nonlinear oscillation is a consequence of the highly nonlinear kinetics, different feedbacks between the variables and elementary processes taking place in crystallizers units, and the non-equilibrium thermodynamic operation. In this paper the control of a continuous crystallizer model that displays oscillatory behavior is addressed via two practical robust control approaches: (i) modeling error compensation, and (ii) integral high order sliding mode control. The controller designs are based on the reduced-order model representation of the population balance equations resulting after the application of the method of moments. Numerical simulations show good closed-loop performance and robustness properties展开更多
The suspension state of crystals in the crystallizer is one of the important indicators for evaluating the adaptability of the crystallizer.This study adopted the Euler-Eulerian two-fluid model to simulate and analyze...The suspension state of crystals in the crystallizer is one of the important indicators for evaluating the adaptability of the crystallizer.This study adopted the Euler-Eulerian two-fluid model to simulate and analyze the fluid motion of solid-liquid two-phase flow in the industrial-grade DTB crystallization kettle,as well as the phase suspension distribution of crystal particles.The main influencing factors investigated are:the heat transfer effect,the height of the bottom of the crystallizer,the number and position of the stirring paddle,crystal size and crystal volume fraction.Based on the research of Euler-Eulerian method to simulate fluids,the Euler-Lagrangian method was further used to simulate the motion state of particle phases with different particle sizes in the crystallizer.It was found that the designed DTB crystallizer has good recycle mixing effect.The particles can be mixed evenly during the operation,which can fully realize the solid-liquid mixing and suspension effect of the drug under study.展开更多
The nucleation and growth kinetics of benzoic acid were determined in a population balance model,describing the seeded batch antisolvent crystallization process.The process analytical technologies(PATs)were utilized t...The nucleation and growth kinetics of benzoic acid were determined in a population balance model,describing the seeded batch antisolvent crystallization process.The process analytical technologies(PATs)were utilized to record the evolution of chord length distributions(CLDs)in solid phase together with the concentration decay in liquid phase,which provided essential experimental information for parameter estimation.The model was solved using standard method of moments based on the moments calculated from CLDs and solute concentration.A developed model,incorporating the nucleation and crystal growth as functions of both supersaturation and solvent composition,has been constructed by fitting the zeroth moment of particles and concentration trends.The determined kinetic parameters were consequently validated against a new experiment with a different flow rate,indicating that the developed model predicted crystallization process reasonably well.This work illustrates the strategy in construct a population balance model for further simulation,model-based optimization and control studies of benzoic acid in antisolvent crystallization.展开更多
Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typicall...Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.展开更多
We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. ...We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.展开更多
Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in ...Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.展开更多
As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile...As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.展开更多
Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selectiv...Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.展开更多
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en...Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.展开更多
基金the financial support by China Hunan Provincial Education Department Innovation Platform Project (20k125)Postgraduate Scientific Research Innovation Project of Hunan Province (CX20210518)Postgraduate Scientific Research Innovation Project of Xiangtan University(XDCX2021B169)
文摘With the increasing demand for high-purity products,the industrial application of melt crystallization technology has been highly concerned.In this study,the purification process of nitrochlorobenzene binary eutectic system(NBES)and naphthalene–benzothiophene solid solution system(NBSSS)in tower melting crystallizer is analyzed,and a mathematical model of crystallization process is established.The key parameters in terms of feed concentration,crystal bed height,reflux ratio and stirring speed effi-ciency on purification effects were discussed by the established model.The results show that the concentration of p-nitrochlorobenzene was purified from 90.85%to 99.99%,when the crystal bed height is 600 mm,the reflux ratio is 2.5,and the stirring speed is 12 rmin^(-1).The naphthalene concentration is purified from 95.89%to 99.99%,when the crystal bed height is 400 mm,the reflux ratio is 1.43,and the stirring speed is 16 rmin^(-1).The quality of the model is evaluated by the ARD(average relative deviation).The minimum ARD values of the NBES and NBSSS are 2.39%and 5.22%,respectively,indicating the model satisfactorily explains the purification process.
文摘A laboratory-scale reaction-crystallization process of struvite synthesis from diluted water solution of Mg^2+, NH^+ 4 and PO3- ions was studied. The research covered the tests of two original constructions of continuous jet-pump Draft Tube Magma (DTM)-type crystallizers with internal circulation of suspension (upward/downward). Interactions between constructional, hydrodynamic and kinetic factors were established and discussed. Nucleation and linear growth rates of struvite crystals were calculated on the basis of population density distribution. Kinetic model of idealized Mixed Suspension Mixed Product Removal (MSMPR) crystallizer considering the size-dependent growth mechanism was applied (Rojkowski hyperbolic equation). For comparison purposes the kinetic data corre- sponded to a simpler, continuous draft tube-type crystallizer equipped with propeller agitator were analyzed. It was concluded that crystal product of larger size was withdrawn from the jet-pump DTM crystallizer of the descending flow of suspension in a mixing chamber.
基金the financial support through Research University Grant and Fundamental Research Grant Scheme(Vot nos.04H46 and 4F224)Chemical Engineering Department,Universiti Teknologi PETRONAS for its support
文摘This study presents a novel design for a spiral finned crystallizer which is the primary element of progressive freeze concentration(PFC) system, which simplifies the setup of the conventional system. After the crystallizer has been designed, the research experiments have been conducted and evaluated through a thorough analysis of its performance by developing a mathematical model that can be used to predict the productivity of ice crystal at a range of coolant temperature. The model is developed based on the basic heat transfer equation, and by considering the solution's and the coolant's convective heat transfer coefficient(h) under the forced flow condition.The model's accuracy is verified by making comparison between the ice crystal mass' experimental value and the values predicted by the model. Consequently, the study found that the model helps in enhancing the PFC system.
文摘The results of struvite reaction crystallization from diluted water solutions of phosphates (V) (0.20 mass% of PO43-) by means of magnesium and ammonium ions are presented. Continuous FB MSZ crystallizer with jet pump driven by compressed air was used. Influence of pH and mean residence time of suspension on the crystal product quality was determined. Increase in pH from 9 to 11 resulted that mean crystal size decreased nearly two-time: from 27.1 to 15.1μm for mean residence time of suspension 900 s. Elongation of this time from 900 to 3,600 s influenced struvite crystal size advantageously-it increased from 27.1 to 41.2 μm at pH 9. From the population density distributions nucleation and growth rates of struvite were calculated based on the simplest SIG model of mass crystallization kinetics in MSMPR crystallizer. Linear growth rate ofstruvite crystals decreased nearly two-time with the increase in environment pH from 9 to 11, and more than 2.5-time with the elongation of mean residence time of crystal suspension in a crystallizer from 900 to 3,600 s from 1.34× 10-8 m/s (pH 9, τ= 900 s) to 2.60×10-9 m/s (pH 11, τ= 3,600 s).
文摘Reaction crystallization of struvite in water solutions containing 0.20 mass % of phosphate(V) ions by magnesium and ammonium ions addition was investigated experimentally. Process was carried out in DTM type crystallizer with liquid jet pump device in 298 K assuming stoichiometric conditions. Struvite crystals of mean size Lm 5.2-23.0 μm were produced depending on pH (9-11) and mean residence time of suspension in a crystallizer τ (900-3600 s). Under these conditions linear growth rate of struvite crystals (SIG MSMPR kinetic model) decreased 2-time with the increase in pH and 3-time with the elongation of mean residence time of crystal suspension from 7.11×10-9 m/s (pH 9, τ900 s) to 1.65×10-9 m/s (pH 11, τ3600 s). Nucleation rate varied within the 7.9×108-1.8×1010 1/(sm3) limits. Struvite product of maximal linear size exceeded 100 μm with 10 vol. % of < 3 μm fraction corresponded to pH 9 and τ3600 s.
文摘An enthalpy finite element analysing software is developed. The software can trace the growing process of the slab shell of the crystallizer in the continuous casting and can calculate the surface temperature distribution. By this, the operator can know the solidifying state and the exit thickness of the cast slab's each section in the crystallizer. The software has great significance in production and practice.
文摘The bench-scale cooling crystallization for ternary solution of L-ascorbic acid (Vitamin C) was studied.The solid-liquid phase diagram of Vitamin C-water-ethanol system was obtained on the basis of differential scanning calorimeter (DSC) curves. The heat of crystallization of Vitamin C was calculated with the aid of quantitative analysis. According to the population balance equation under unsteady state, the rates of nucleation and growth were determined. The parameters of crystallization kinetics equations were estimated by regression of experimental data. Crystal morphology and size were determined with x-ray diffraction and TA Ⅱ Coulter Counter.
文摘A wastewater evaporation-desalination pretreatment method was introduced to remove the Na+ and K+ salts in volatile organic compounds (VOCs) wastewater before it was fed into the incinerator. VOCs in the wastewater were volatilized in the evaporation system and then the vapor was combusted in an incinerator. Simulated phenol wastewater containing sodium chloride was evaporated and concentrated and sodium chloride was crystallized in different parameters. The experimental results showed that the higher initial concentration of sodium chloride increases the ratio of volatilization of VOCs, which was due to the effect of “salting out” (a decrease in the solubility of the nonelectrolyte in the solution, or more rigorously, an increase in its activity coef-ficient, caused by the salt addition (Furter and Cook, 1967)). When evaporation speed was increased from 1.67 ml/min to 2.73 ml/min, the total removal coefficient of sodium chloride was about 99.88%~99.99%. This pretreatment procedure eliminates the slag phenomenon caused by Na+ and K+ salts during wastewater incineration, so the incinerator could operate continuously, and the wastewater evaporation could increase the heat value of wastewater, and the operation cost would be reduced.
文摘The reactive crystallization process of dexamethasone sodium phosphate was investigated in a continuous mixed-suspension, mixed-product-removal(MSMPR) crystallizer. Analyzing experimental data, it was found that the growth of product crystal was size-dependent. The Bransom, CR, ASL, M J2 and M J3 size-dependent growth models were discussed in details. Using experimental steady state population density data of dexamethasone sodium phosphate, parameters of five size-dependent growth models were determined by the method of non-linear least-squares. By comparison of experimental population density and linear growth rate data with those obtained from the five size-dependent growth models, it was found that the MJ3 model predicts the growth more accurately than do the other four models. Based on the theory of population balance, the crystal nucleation and growth rate equations of dexamethasone sodium phosphate were determined by non-linear regression method. The effects of different operation parameters such as supersaturation, magma density and temperature on the quality of product crystal were also discussed, and the optimal operation conditions were derived.
文摘Modeling the kinetics of the preparing process is necessary to produce a product with the appropriate particle properties and minimum production cost.Owing to the lackness of crystal size distributor (CSD) information,however,solvent-mediated phase transformation encounters difficulty in modeling the kinetics as compared to solution crystallization.Consequently,a model was established by making the product CSD to move along by horizontal translation to obtain the CSDs of the stable phase in the process of transformation.Then the moment method was used to solve the popular balance equation,and the least square nonlinear regression method was applied to estimate the kinetics parameters.The model has been successfully used to simulate the transformation of CaSO4?2H2O to α-CaSO4?1/2H2O in an isothermal seeded batch crystallizer with different stirring speeds,and it is beneficial to producing high performance α-CaSO4?1/2H2O crystals which have the right particle characteristics.
文摘Crystallization is used to produce vast quantities of materials. For several applications, continuous crystallization is often the best operation mode because it is able to reproduce better crystal size distributions than other operation modes. Nonlinear oscillation in continuous industrial crystallization processes is a well-known phenomenon leading to practical difficulties such that control actions are necessary. Nonlinear oscillation is a consequence of the highly nonlinear kinetics, different feedbacks between the variables and elementary processes taking place in crystallizers units, and the non-equilibrium thermodynamic operation. In this paper the control of a continuous crystallizer model that displays oscillatory behavior is addressed via two practical robust control approaches: (i) modeling error compensation, and (ii) integral high order sliding mode control. The controller designs are based on the reduced-order model representation of the population balance equations resulting after the application of the method of moments. Numerical simulations show good closed-loop performance and robustness properties
基金support from 2024 Key Scientific Research Project Plan for Institutions of Higher Education in Henan Province(grant No.24A530006)Kaifeng City Science and Technology Development Plan Science and Technology Research Project(grant No.2303057).
文摘The suspension state of crystals in the crystallizer is one of the important indicators for evaluating the adaptability of the crystallizer.This study adopted the Euler-Eulerian two-fluid model to simulate and analyze the fluid motion of solid-liquid two-phase flow in the industrial-grade DTB crystallization kettle,as well as the phase suspension distribution of crystal particles.The main influencing factors investigated are:the heat transfer effect,the height of the bottom of the crystallizer,the number and position of the stirring paddle,crystal size and crystal volume fraction.Based on the research of Euler-Eulerian method to simulate fluids,the Euler-Lagrangian method was further used to simulate the motion state of particle phases with different particle sizes in the crystallizer.It was found that the designed DTB crystallizer has good recycle mixing effect.The particles can be mixed evenly during the operation,which can fully realize the solid-liquid mixing and suspension effect of the drug under study.
基金supported by National Natural Science Foundation of China (grant Nos.22108061,22178054,and 22068002)Natural Science Foundation of Hebei Province (grant No.B2022407009)Academic and Technical Leader Training Program for Major Disciplinessin Jiangxi Province (grant No.20212BCJ23001).
文摘The nucleation and growth kinetics of benzoic acid were determined in a population balance model,describing the seeded batch antisolvent crystallization process.The process analytical technologies(PATs)were utilized to record the evolution of chord length distributions(CLDs)in solid phase together with the concentration decay in liquid phase,which provided essential experimental information for parameter estimation.The model was solved using standard method of moments based on the moments calculated from CLDs and solute concentration.A developed model,incorporating the nucleation and crystal growth as functions of both supersaturation and solvent composition,has been constructed by fitting the zeroth moment of particles and concentration trends.The determined kinetic parameters were consequently validated against a new experiment with a different flow rate,indicating that the developed model predicted crystallization process reasonably well.This work illustrates the strategy in construct a population balance model for further simulation,model-based optimization and control studies of benzoic acid in antisolvent crystallization.
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
基金supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCO,the Samsung Research Funding&Incubation Center for Future Technology grant(SRFC-IT1901-52)funded by Samsung Electronicsthe National Research Foundation(NRF)grants(NRF-2022M3C1A3081312,NRF-2022M3H4A1A-02074314,NRF-2022M3H4A1A02046445,NRF-2021M3H4A1A04086357,NRF-2019R1A5A8080290,RS-2024-00356928,RS-2023-00283667)funded by the Ministry of Science and ICT of the Korean governmentthe Korea Evaluation Institute of Industrial Technology(KEIT)grant(No.1415185027/20019169,Alchemist project)funded by the Ministry of Trade,Industry and Energy(MOTIE)of the Korean government.H.Kim and J.Kim acknowledge the POSTECH Alchemist fellowship,the Asan Foundation Biomedical Science fellowship,and Presidential Science fellowship funded by the MSIT of the Korean government.
文摘Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.
文摘We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.
基金supported by the National Key Research and Development Program of China(2021YFB3702005)the National Natural Science Foundation of China(52304352)+3 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2023JH6/100100046)2022"Chunhui Program"Collaborative Scientific Research Project(202200042)the Doctoral Start-up Foundation of Liaoning Province(2023-BS-182)the Technology Development Project of State Key Laboratory of Metal Material for Marine Equipment and Application[HGSKL-USTLN(2022)01].
文摘Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.
基金supported by the National Key R&D Program of China(2018YFC1900500)the Graduate Scientific Research and Innovation Foundation of Chongqing,China(Grant No.CYB20002).
文摘As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.
基金the Science and Technology Key Project of Anhui Province,China(No.2022e03020004).
文摘Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.
基金the financial support from the National Key R&D program of China(2021YFF0500501 and 2021YFF0500504)the Fundamental Research Funds for the Central Universities(YJS2213 and JB211408)+1 种基金the National Natural Science Foundation of China(61874083)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-014)
文摘Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.