期刊文献+
共找到897篇文章
< 1 2 45 >
每页显示 20 50 100
Adaptive allocation strategy for cooperatively jamming netted radar system based on improved cuckoo search algorithm 被引量:1
1
作者 De-jiang Lu Xing Wang +1 位作者 Xiao-tian Wu You Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期285-297,共13页
The jamming resource allocation problem of the aircraft formation cooperatively jamming netted radar system is investigated.An adaptive allocation strategy based on dynamic adaptive discrete cuckoo search algorithm(DA... The jamming resource allocation problem of the aircraft formation cooperatively jamming netted radar system is investigated.An adaptive allocation strategy based on dynamic adaptive discrete cuckoo search algorithm(DADCS)is proposed,whose core is to adjust allocation scheme of limited jamming resource of aircraft formation in real time to maintain the best jamming effectiveness against netted radar system.Firstly,considering the information fusion rules and different working modes of the netted radar system,a two-factor jamming effectiveness evaluation function is constructed,detection probability and aiming probability are adopted to characterize jamming effectiveness against netted radar system in searching and tracking mode,respectively.Then a nonconvex optimization model for cooperatively jamming netted radar system is established.Finally,a dynamic adaptive discrete cuckoo search algorithm(DADCS)is constructed by improving path update strategies and introducing a global learning mechanism,and a three-step solution method is proposed subsequently.Simulation results are provided to demonstrate the advantages of the proposed optimization strategy and the effectiveness of the improved algorithm. 展开更多
关键词 cuckoo search algorithm Netted radar system Radar countermeasures Resource allocation Information fusion
下载PDF
Application of a Parallel Adaptive Cuckoo Search Algorithm in the Rectangle Layout Problem 被引量:1
2
作者 Weimin Zheng Mingchao Si +2 位作者 Xiao Sui Shuchuan Chu Jengshyang Pan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2173-2196,共24页
The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter stra... The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter strategy and a parallel communication strategy are proposed to further improve the Cuckoo Search(CS)algorithm.This strategy greatly improves the convergence speed and accuracy of the algorithm and strengthens the algorithm’s ability to jump out of the local optimal.This paper compares the optimization performance of Parallel Adaptive Cuckoo Search(PACS)with CS,Parallel Cuckoo Search(PCS),Particle Swarm Optimization(PSO),Sine Cosine Algorithm(SCA),Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Differential Evolution(DE)and Artificial Bee Colony(ABC)algorithms by using the CEC-2013 test function.The results show that PACS algorithmoutperforms other algorithms in 20 of 28 test functions.Due to the superior performance of PACS algorithm,this paper uses it to solve the problem of the rectangular layout.Experimental results show that this scheme has a significant effect,and the material utilization rate is improved from89.5%to 97.8%after optimization. 展开更多
关键词 Rectangular layout cuckoo search algorithm parallel communication strategy adaptive parameter
下载PDF
Cuckoo search algorithm-based optimal deployment method of heterogeneous multistatic radar for barrier coverage
3
作者 LI Haipeng FENG Dazheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1101-1115,共15页
This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment ... This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment patterns in the optimal deployment sequence.Based on these properties and considering location restrictions,it introduces an optimization model of arc barrier coverage and aims to minimize the total deployment cost of heterogeneous multistatic radars.To overcome the non-convexity of the model and the non-analytical nature of the objective function,an algorithm combining integer line programming and the cuckoo search algorithm(CSA)is proposed.The proposed algorithm can determine the number of receivers and transmitters in each optimal deployment squence to minimize the total placement cost.Simulations are conducted in different conditions to verify the effectiveness of the proposed method. 展开更多
关键词 heterogeneous multistatic radar(HMR) arc barrier coverage minimum deployment cost optimal deployment sequence cuckoo search algorithm(CSA)
下载PDF
Artificial Bee Colony with Cuckoo Search for Solving Service Composition
4
作者 Fadl Dahan Abdulelah Alwabel 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3385-3402,共18页
In recent years,cloud computing has provided a Software As A Service(SaaS)platform where the software can be reused and applied to fulfill compli-cated user demands according to specific Quality of Services(QoS)constrai... In recent years,cloud computing has provided a Software As A Service(SaaS)platform where the software can be reused and applied to fulfill compli-cated user demands according to specific Quality of Services(QoS)constraints.The user requirements are formulated as a workflow consisting of a set of tasks.However,many services may satisfy the functionality of each task;thus,searching for the composition of the optimal service while maximizing the QoS is formulated as an NP-hard problem.This work will introduce a hybrid Artificial Bee Colony(ABC)with a Cuckoo Search(CS)algorithm to untangle service composition problem.The ABC is a well-known metaheuristic algorithm that can be applied when dealing with different NP-hard problems with an outstanding record of performance.However,the ABC suffers from a slow convergence problem.Therefore,the CS is used to overcome the ABC’s limitations by allowing the abandoned bees to enhance their search and override the local optimum.The proposed hybrid algorithm has been tested on 19 datasets and then compared with two standard algorithms(ABC and CS)and three state-of-the-art swarm-based composition algorithms.In addition,extensive parameter study experiments were conducted to set up the proposed algorithm’s parameters.The results indicate that the proposed algorithm outperforms the standard algorithms in the three comparison criteria(bestfitness value,averagefitness value,and average execution time)overall datasets in 30 different runs.Furthermore,the proposed algorithm also exhibits better performance than the state–of–the–art algorithms in the three comparison criteria over 30 different runs. 展开更多
关键词 Cloud computing web service composition artificial bee colony cuckoo search
下载PDF
Ensuring Information Security in Electronic Health Record System Using Cryptography and Cuckoo Search Algorithm
5
作者 Arkan Kh Shakr Sabonchi Zainab Hashim Obaid 《Journal of Information Hiding and Privacy Protection》 2023年第1期1-18,共18页
In the contemporary era,the abundant availability of health information through internet and mobile technology raises concerns.Safeguarding and maintaining the confidentiality of patients’medical data becomes paramou... In the contemporary era,the abundant availability of health information through internet and mobile technology raises concerns.Safeguarding and maintaining the confidentiality of patients’medical data becomes paramount when sharing such information with authorized healthcare providers.Although electronic patient records and the internet have facilitated the exchange of medical information among healthcare providers,concerns persist regarding the security of the data.The security of Electronic Health Record Systems(EHRS)can be improved by employing the Cuckoo Search Algorithm(CS),the SHA-256 algorithm,and the Elliptic Curve Cryptography(ECC),as proposed in this study.The suggested approach involves usingCS to generate the ECCprivate key,thereby enhancing the security of data storage in EHR.The study evaluates the proposed design by comparing encoding and decoding times with alternative techniques like ECC-GA-SHA-256.The research findings indicate that the proposed design achieves faster encoding and decoding times,completing 125 and 175 iterations,respectively.Furthermore,the proposed design surpasses other encoding techniques by exhibiting encoding and decoding times that are more than 15.17%faster.These results imply that the proposed design can significantly enhance the security and performance of EHRs.Through the utilization of CS,SHA-256,and ECC,this study presents promising methods for addressing the security challenges associated with EHRs. 展开更多
关键词 Information security electronic health record system CRYPTOGRAPHY cuckoo search algorithms
下载PDF
Structural reliability analysis using enhanced cuckoo search algorithm and artificial neural network 被引量:6
6
作者 QIN Qiang FENG Yunwen LI Feng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1317-1326,共10页
The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co... The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm. 展开更多
关键词 structural reliability enhanced cuckoo search(ECS) artificial neural network(ANN) cuckoo search(CS) algorithm
下载PDF
Modified Cuckoo Search Algorithm to Solve Economic Power Dispatch Optimization Problems 被引量:16
7
作者 Jian Zhao Shixin Liu +2 位作者 Mengchu Zhou Xiwang Guo Liang Qi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第4期794-806,共13页
A modified cuckoo search(CS) algorithm is proposed to solve economic dispatch(ED) problems that have nonconvex, non-continuous or non-linear solution spaces considering valve-point effects, prohibited operating zones,... A modified cuckoo search(CS) algorithm is proposed to solve economic dispatch(ED) problems that have nonconvex, non-continuous or non-linear solution spaces considering valve-point effects, prohibited operating zones, transmission losses and ramp rate limits. Comparing with the traditional cuckoo search algorithm, we propose a self-adaptive step size and some neighbor-study strategies to enhance search performance.Moreover, an improved lambda iteration strategy is used to generate new solutions. To show the superiority of the proposed algorithm over several classic algorithms, four systems with different benchmarks are tested. The results show its efficiency to solve economic dispatch problems, especially for large-scale systems. 展开更多
关键词 cuckoo search(CS) economic dispatch(ED) prohibited operating zones ramp rate limits valve-point effects
下载PDF
Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method 被引量:14
8
作者 李向涛 殷明浩 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期113-118,共6页
We study the parameter estimation of a nonlinear chaotic system,which can be essentially formulated as a multidimensional optimization problem.In this paper,an orthogonal learning cuckoo search algorithm is used to es... We study the parameter estimation of a nonlinear chaotic system,which can be essentially formulated as a multidimensional optimization problem.In this paper,an orthogonal learning cuckoo search algorithm is used to estimate the parameters of chaotic systems.This algorithm can combine the stochastic exploration of the cuckoo search and the exploitation capability of the orthogonal learning strategy.Experiments are conducted on the Lorenz system and the Chen system.The proposed algorithm is used to estimate the parameters for these two systems.Simulation results and comparisons demonstrate that the proposed algorithm is better or at least comparable to the particle swarm optimization and the genetic algorithm when considering the quality of the solutions obtained. 展开更多
关键词 cuckoo search algorithm chaotic system parameter estimation orthogonal learning
原文传递
Wind speed forecasting based on wavelet decomposition and wavelet neural networks optimized by the Cuckoo search algorithm 被引量:8
9
作者 ZHANG Ye YANG Shiping +2 位作者 GUO Zhenhai GUO Yanling ZHAO Jing 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第2期107-115,共9页
Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In... Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models. 展开更多
关键词 Wind speed forecast wavelet decomposition neural network cuckoo search algorithm
下载PDF
A hybrid cuckoo search algorithm with feasibility-based rule for constrained structural optimization 被引量:5
10
作者 龙文 张文专 +1 位作者 黄亚飞 陈义雄 《Journal of Central South University》 SCIE EI CAS 2014年第8期3197-3204,共8页
Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much at... Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm. 展开更多
关键词 constrained optimization problem cuckoo search algorithm pattem search feasibility-based rule engineeringoptimization
下载PDF
Hybrid MPPT approach using Cuckoo Search and Grey Wolf Optimizer for PV systems under variant operating conditions 被引量:4
11
作者 Jinan Abdulhasan Salim Baraa M.Albaker +1 位作者 Muwafaq Shyaa Alwan M.Hasanuzzaman 《Global Energy Interconnection》 EI CAS CSCD 2022年第6期627-644,共18页
Photovoltaic(PV)systems are adversely affected by partial shading and non-uniform conditions.Meanwhile,the addition of a bypass shunt diode to each PV module prevents hotspots.It also produces numerous peaks in the PV... Photovoltaic(PV)systems are adversely affected by partial shading and non-uniform conditions.Meanwhile,the addition of a bypass shunt diode to each PV module prevents hotspots.It also produces numerous peaks in the PV array’s power-voltage characteristics,thereby trapping conventional maximum power point tracking(MPPT)methods in local peaks.Swarm optimization approaches can be used to address this issue.However,these strategies have an unreasonably long convergence time.The Grey Wolf Optimizer(GWO)is a fast and more dependable optimization algorithm.This renders it a good option for MPPT of PV systems operating in varying partial shading.The conventional GWO method involves a long conversion time,large steady-state oscillations,and a high failure rate.This work attempts to address these issues by combining Cuckoo Search(CS)with the GWO algorithm to improve the MPPT performance.The results of this approach are compared with those of conventional MPPT according to GWO and MPPT methods based on perturb and observe(P&O).A comparative analysis reveals that under non-uniform operating conditions,the hybrid GWO CS(GWOCS)approach presented in this article outperforms the GWO and P&O approaches. 展开更多
关键词 cuckoo search GWO MPPT Hybrid MPPT PV system Luo DC-DC converter
下载PDF
Evaluation and intelligent deployment of coal and coalbed methane coupling coordinated exploitation based on Bayesian network and cuckoo search 被引量:2
12
作者 Quanle Zou Zihan Chen +6 位作者 Zhiheng Cheng Yunpei Liang Wenjie Xu Peiran Wen Bichuan Zhang Han Liu Fanjie Kong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1315-1328,共14页
Coal and coalbed methane(CBM)coordinated exploitation is a key technology for the safe exploitation of both resources.However,existing studies lack the quantification and evaluation of the degree of coordination betwe... Coal and coalbed methane(CBM)coordinated exploitation is a key technology for the safe exploitation of both resources.However,existing studies lack the quantification and evaluation of the degree of coordination between coal mining and coalbed methane extraction.In this study,the concept of coal and coalbed methane coupling coordinated exploitation was proposed,and the corresponding evaluation model was established using the Bayesian principle.On this basis,the objective function of coal and coalbed methane coordinated exploitation deployment was established,and the optimal deployment was determined through a cuckoo search.The results show that clarifying the coupling coordinated level of coal and coalbed methane resource exploitation in coal mines is conducive to adjusting the deployment plan in advance.The case study results show that the evaluation and intelligent deployment method proposed in this paper can effectively evaluate the coupling coordinated level of coal and coalbed methane resource exploitation and intelligently optimize the deployment of coal mine operations.The optimization results demonstrate that the safe and efficient exploitation of coal and CBM resources is promoted,and coal mining and coalbed methane extraction processes show greater cooperation.The observations and findings of this study provide a critical reference for coal mine resource exploitation in the future. 展开更多
关键词 Coal and coalbed methane Coupling coordinated exploitation Bayesian network cuckoo search Intelligent optimization
下载PDF
Control allocation for aircraft with input constraints based on improved cuckoo search algorithm 被引量:1
13
作者 Yao LU Chao-yang DONG Qing WANG 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第1期1-5,共5页
The control allocation problem of aircraft whose control inputs contain integer constraints is investigated. The control allocation problem is described as an integer programming problem and solved by the cuckoo searc... The control allocation problem of aircraft whose control inputs contain integer constraints is investigated. The control allocation problem is described as an integer programming problem and solved by the cuckoo search algorithm. In order to enhance the search capability of the cuckoo search algorithm, the adaptive detection probability and amplification factor are designed. Finally, the control allocation method based on the proposed improved cuckoo search algorithm is applied to the tracking control problem of the innovative control effector aircraft. The comparative simulation results demonstrate the superiority and effectiveness of the proposed improved cuckoo search algorithm in control allocation of aircraft. 展开更多
关键词 Control allocation OPTIMIZATION cuckoo search algorithm Innovative control effector aircraft TRACKING
下载PDF
A Novel Method for Identifying Recursive Systematic Convolutional Encoders Based on the Cuckoo Search Algorithm 被引量:1
14
作者 Shunan Han Peng Liu Guang Huang 《China Communications》 SCIE CSCD 2022年第12期64-72,共9页
The existing methods for identifying recursive systematic convolutional encoders with high robustness require to test all the candidate generator matrixes in the search space exhaustively.With the increase of the code... The existing methods for identifying recursive systematic convolutional encoders with high robustness require to test all the candidate generator matrixes in the search space exhaustively.With the increase of the codeword length and constraint length,the search space expands exponentially,and thus it limits the application of these methods in practice.To overcome the limitation,a novel identification method,which gets rid of exhaustive test,is proposed based on the cuckoo search algorithm by using soft-decision data.Firstly,by using soft-decision data,the probability that a parity check equation holds is derived.Thus,solving the parity check equations is converted to maximize the joint probability that parity check equations hold.Secondly,based on the standard cuckoo search algorithm,the established cost function is optimized.According to the final solution of the optimization problem,the generator matrix of recursive systematic convolutional code is estimated.Compared with the existing methods,our proposed method does not need to search for the generator matrix exhaustively and has high robustness.Additionally,it does not require the prior knowledge of the constraint length and is applicable in any modulation type. 展开更多
关键词 RSC code blind identification softdecision cuckoo search algorithm
下载PDF
A Novel Cuckoo Search Algorithm and Its Application 被引量:1
15
作者 Ping Liu Shengjiang Zhang 《Open Journal of Applied Sciences》 2021年第9期1071-1081,共11页
In this paper, the principle of Cuckoo algorithm is introduced, and the traditional Cuckoo algorithm is improved to establish a mathematical model of multi-objective optimization scheduling. Based on the improved algo... In this paper, the principle of Cuckoo algorithm is introduced, and the traditional Cuckoo algorithm is improved to establish a mathematical model of multi-objective optimization scheduling. Based on the improved algorithm, the model is optimized to a certain extent. Through analysis, it is proved that the improved algorithm has higher computational accuracy and can effectively improve the global convergence. 展开更多
关键词 cuckoo search Algorithm Feature Selection Infrared Spectrum Global Convergence
下载PDF
Hybrid Cuckoo Search Algorithm for Scheduling in Cloud Computing
16
作者 Manoj Kumar Suman 《Computers, Materials & Continua》 SCIE EI 2022年第4期1641-1660,共20页
Cloud computing has gained widespread popularity over the last decade.Scheduling problem in cloud computing is prejudiced due to enormous demands of cloud users.Meta-heuristic techniques in cloud computing have exhibi... Cloud computing has gained widespread popularity over the last decade.Scheduling problem in cloud computing is prejudiced due to enormous demands of cloud users.Meta-heuristic techniques in cloud computing have exhibited high performance in comparison to traditional scheduling algorithms.This paper presents a novel hybrid Nesterov Accelerated Gradient-based Cuckoo Search Algorithm(NAGCSA)to address the scheduling issue in cloud computing.Nesterov Accelerated Gradient can address trapping at local minima in CSA by updating the position using future approximation.The local search in the proposed algorithm is performed by using Nesterov Accelerated Gradient,while the global search is performed by using levy flights.The amalgamation of NAG and CSA helps in cost reduction and time-saving for users.The simulation has been carried out on the CloudSim tool on three different real datasets;NASA,HPC2N,and SDSC.The results of the proposed hybrid algorithm have been compared with state-of-art scheduling algorithms(GA,PSO,and CSA),and statistical significance is carried on mean,standard deviation,and best for each algorithm.It has been established that the proposed algorithm minimizes the execution cost and makespan,hence enhancing the quality of service for users. 展开更多
关键词 Cloud computing SCHEDULING quality of service cuckoo search COST MAKESPAN
下载PDF
Parameter Estimation of Mixed Weibull Distributions Using Cuckoo Search
17
作者 池阔 王广彦 +1 位作者 康建设 吴坤 《Journal of Donghua University(English Edition)》 EI CAS 2016年第2期235-238,共4页
The lifetime data of products with multiple failure modes which are collected from life testing are often fitted by the mixed Weibull distributions. Since the mixed Weibull distributions contain no less than five para... The lifetime data of products with multiple failure modes which are collected from life testing are often fitted by the mixed Weibull distributions. Since the mixed Weibull distributions contain no less than five parameters,the parameter estimation is difficult and inaccurate. In order to enhance the accuracy,a new method of parameter estimation based on Cuckoo search( CS) is proposed. An optimization model for the mixed Weibull distribution is formulated by minimizing the residual sum of squares. The optimal parameters are searched via CS algorithm. In the case study,the lifetime data come from the life testing of diesel injectors and are fitted by the twocomponent Weibull mixture. Regarding the maximum absolute error and the accumulative absolute error between estimated and observed values as the accuracy index of parameter estimation,the results of four parameter estimation methods that the graphic estimation method,the nonlinear least square method,the optimization method based on particle swarm optimization( PSO) and the proposed method are compared. The result shows that the proposed method is more efficient and more accurate than the other three methods. 展开更多
关键词 RELIABILITY mixed Weibull distribution parameter estimation cuckoo search(CS)
下载PDF
Convergence Analysis of Cuckoo Search by Creating Markov Chain
18
作者 ZHOU Hui CHENG Ya-qiao +1 位作者 LI Dan-mei XU Chen 《Journal of Donghua University(English Edition)》 EI CAS 2016年第6期973-977,共5页
Cuckoo search(CS) has been used successfully for solving global optimization problems.From a theoretical point of view,the convergence of the CS is an important issue.In this paper,convergence analysis of CS was studi... Cuckoo search(CS) has been used successfully for solving global optimization problems.From a theoretical point of view,the convergence of the CS is an important issue.In this paper,convergence analysis of CS was studied.The transition probability characteristics of the population to construct a Markov chain were analyzed.The homogeneity of the Markov chain was derived based on stochastic process theory.Then it was proved to be an absorbing state Markov chain.Consequently,the global convergence of CS was deduced based on conditions of convergence sequence and total probability formula,and the expected convergence time was given.Finally,a series of experiments were conducted.Experimental results were analyzed and it is observed that CS seems to perform better than PSO. 展开更多
关键词 cuckoo search(CS) global convergence Markov chain expected convergence time
下载PDF
A Cuckoo Search Detector Generation-based Negative Selection Algorithm
19
作者 Ayodele Lasisi Ali M.Aseere 《Computer Systems Science & Engineering》 SCIE EI 2021年第8期183-195,共13页
The negative selection algorithm(NSA)is an adaptive technique inspired by how the biological immune system discriminates the self from nonself.It asserts itself as one of the most important algorithms of the artificia... The negative selection algorithm(NSA)is an adaptive technique inspired by how the biological immune system discriminates the self from nonself.It asserts itself as one of the most important algorithms of the artificial immune system.A key element of the NSA is its great dependency on the random detectors in monitoring for any abnormalities.However,these detectors have limited performance.Redundant detectors are generated,leading to difficulties for detectors to effectively occupy the non-self space.To alleviate this problem,we propose the nature-inspired metaheuristic cuckoo search(CS),a stochastic global search algorithm,which improves the random generation of detectors in the NSA.Inbuilt characteristics such as mutation,crossover,and selection operators make the CS attain global convergence.With the use of Lévy flight and a distance measure,efficient detectors are produced.Experimental results show that integrating CS into the negative selection algorithm elevated the detection performance of the NSA,with an average increase of 3.52%detection rate on the tested datasets.The proposed method shows superiority over other models,and detection rates of 98%and 99.29%on Fisher’s IRIS and Breast Cancer datasets,respectively.Thus,the generation of highest detection rates and lowest false alarm rates can be achieved. 展开更多
关键词 Negative selection algorithm detector generation cuckoo search OPTIMIZATION
下载PDF
Parallelizing Modified Cuckoo Search on MapReduce Architecture
20
作者 Chia-Yu Lin Yuan-Ming Pai +2 位作者 Kun-Hung Tsai Charles H.-P. Wen Li-Chun Wang 《Journal of Electronic Science and Technology》 CAS 2013年第2期115-123,共9页
Meta-heuristics typically takes long time to search optimality from huge amounts of data samples for applications like communication, medicine, and civil engineering. Therefore, parallelizing meta-heuristics to massiv... Meta-heuristics typically takes long time to search optimality from huge amounts of data samples for applications like communication, medicine, and civil engineering. Therefore, parallelizing meta-heuristics to massively reduce runtime is one hot topic in related research. In this paper, we propose a MapReduce modified cuckoo search (MRMCS), an efficient modified cuckoo search (MCS) implementation on a MapReduce architecture--Hadoop. MapReduce particle swarm optimization (MRPSO) from a previous work is also implemented for comparison. Four evaluation functions and two engineering design problems are used to conduct experiments. As a result, MRMCS shows better convergence in obtaining optimality than MRPSO with two to four times speed-up. 展开更多
关键词 Index Terms-cuckoo search MAPREDUCE META-HEURISTICS particle swarm optimization.
下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部