Efficient evaluation of crop phenotypes is a prerequisite for breeding, cultivar adoption, genomics and phenomics study. Plant genotyping is developing rapidly through the use of high-throughput sequencing techniques,...Efficient evaluation of crop phenotypes is a prerequisite for breeding, cultivar adoption, genomics and phenomics study. Plant genotyping is developing rapidly through the use of high-throughput sequencing techniques,while plant phenotyping has lagged far behind and it has become the rate-limiting factor in genetics, large-scale breeding and development of new cultivars. In this paper,we consider crop phenotyping technology under three categories. The first is high-throughput phenotyping techniques in controlled environments such as greenhouses or specifically designed platforms. The second is a phenotypic strengthening test in semi-controlled environments, especially for traits that are difficult to be tested in multi-environment trials(MET), such as lodging, drought and disease resistance. The third is MET in uncontrolled environments, in which crop plants are managed according to farmer's cultural practices. Research and application of these phenotyping techniques are reviewed and methods for MET improvement proposed.展开更多
基金supported by the National Natural Science Foundation(Spatial Distribution of Multi-environment Trial Stations for Maize Cultivar,41301075)the National Science-technology Support Plan Projects(Research and Demonstration of North China Corn Commercialized Breeding Technique,2014BAD01B01)Key Laboratory of Agricultural Information Acquisition Technology,Ministry of Agriculture
文摘Efficient evaluation of crop phenotypes is a prerequisite for breeding, cultivar adoption, genomics and phenomics study. Plant genotyping is developing rapidly through the use of high-throughput sequencing techniques,while plant phenotyping has lagged far behind and it has become the rate-limiting factor in genetics, large-scale breeding and development of new cultivars. In this paper,we consider crop phenotyping technology under three categories. The first is high-throughput phenotyping techniques in controlled environments such as greenhouses or specifically designed platforms. The second is a phenotypic strengthening test in semi-controlled environments, especially for traits that are difficult to be tested in multi-environment trials(MET), such as lodging, drought and disease resistance. The third is MET in uncontrolled environments, in which crop plants are managed according to farmer's cultural practices. Research and application of these phenotyping techniques are reviewed and methods for MET improvement proposed.