The present article tests the following general assumption:plant taxa with different specializations towards mycorrhizal interactions should have different root syndromes.Roots of 61 species common in boreal zone were...The present article tests the following general assumption:plant taxa with different specializations towards mycorrhizal interactions should have different root syndromes.Roots of 61 species common in boreal zone were studied:16 species of Poaceae,24 species of Cyperaceae,14 species of Orchidaceae,and 7 species of Iridaceae.Using a fixed material of 5 individuals of each species,the following was determined:number of orders of branching roots;transverse dimensions of root,stele and cortex;number of primary xylem vessels and exodermis layers;length of root hairs;abundance of mycorrhiza.Species of each family had well-defined syndromes.Roots of Orchidaceae and Iridaceae were thick with a large stele and developed exodermis.Orchidaceae had no branching roots and had long root hairs.In Iridaceae,roots were branched,and root hairs were short.Roots of Poaceae and Cyperaceae were thin with a relatively thin stele.Root hairs were short in Poaceae and long in Cyperaceae.Our finding that root syndromes of four families of monocots differed is a new and unexpected discovery.The high specificity of root syndromes in Cyperaceae,Iridaceae,Poaceae,and Orchidaceae indicates that species of these families use different strategies to obtain water and soil nutrients.展开更多
Eleocharis vivipara,an amphibious sedge in the Cyperaceae family,has several remarkable properties,most notably its alternate use of C_(3)photosynthesis underwater and C_(4)photosynthesis on land.However,the absence o...Eleocharis vivipara,an amphibious sedge in the Cyperaceae family,has several remarkable properties,most notably its alternate use of C_(3)photosynthesis underwater and C_(4)photosynthesis on land.However,the absence of genomic data has hindered its utility for evolutionary and genetic research.Here,we present a high-quality genome for E.vivipara,representing the first chromosome-level genome for the Eleocharis genus,with an approximate size of 965.22 Mb mainly distributed across 10 chromosomes.Its Hi–C pattern,chromosome clustering results,and one-to-one genome synteny across two subgroups indicates a tetraploid structure with chromosome count 2n=4x=20.Phylogenetic analysis suggests that E.vivipara diverged from Cyperus esculentus approximately 32.96million years ago(Mya),and underwent a wholegenome duplication(WGD)about 3.5 Mya.Numerous fusion and fission events were identified between the chromosomes of E.vivipara and its close relatives.We demonstrate that E.vivipara has holocentromeres,a chromosomal feature which can maintain the stability of such chromosomal rearrangements.Experimental transplantation and cross-section studies showed its terrestrial culms developed C_(4)Kranz anatomy with increased number of chloroplasts in the bundle sheath(BS)cells.Gene expression and weighted gene co-expression network analysis(WGCNA)showed overall elevated expression of core genes associated with the C_(4)pathway,and significant enrichment of genes related to modified culm anatomy and photosynthesis efficiency.We found evidence of mixed nicotinamide adenine dinucleotide-malic enzyme and phosphoenolpyruvate carboxykinase type C_(4)photosynthesis in E.vivipara,and hypothesize that the evolution of C_(4)photosynthesis predates the WGD event.The mixed type is dominated by subgenome A and supplemented by subgenome B.Collectively,our findings not only shed light on the evolution of E.vivipara and karyotype within the Cyperaceae family,but also provide valuable insights into the transition between C_(3)and C_(4)photosynthesis,offering promising avenues for crop improvement and breeding.展开更多
基金a part of the research project of the Institute of Plant and Animal Ecology,Ural Branch,Russian Academy of Sciences (№122021000092-9)
文摘The present article tests the following general assumption:plant taxa with different specializations towards mycorrhizal interactions should have different root syndromes.Roots of 61 species common in boreal zone were studied:16 species of Poaceae,24 species of Cyperaceae,14 species of Orchidaceae,and 7 species of Iridaceae.Using a fixed material of 5 individuals of each species,the following was determined:number of orders of branching roots;transverse dimensions of root,stele and cortex;number of primary xylem vessels and exodermis layers;length of root hairs;abundance of mycorrhiza.Species of each family had well-defined syndromes.Roots of Orchidaceae and Iridaceae were thick with a large stele and developed exodermis.Orchidaceae had no branching roots and had long root hairs.In Iridaceae,roots were branched,and root hairs were short.Roots of Poaceae and Cyperaceae were thin with a relatively thin stele.Root hairs were short in Poaceae and long in Cyperaceae.Our finding that root syndromes of four families of monocots differed is a new and unexpected discovery.The high specificity of root syndromes in Cyperaceae,Iridaceae,Poaceae,and Orchidaceae indicates that species of these families use different strategies to obtain water and soil nutrients.
基金funded by the National Natural Science Foundation of China(32300217)the National Key R&D Program of China(2023YFA0914600)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(2022A1515110358)the Guangdong Science and Technology Foundation,“Zhu Jiang Talent Innovation”project(2019ZT08N628)the Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District(PT202101-01)。
文摘Eleocharis vivipara,an amphibious sedge in the Cyperaceae family,has several remarkable properties,most notably its alternate use of C_(3)photosynthesis underwater and C_(4)photosynthesis on land.However,the absence of genomic data has hindered its utility for evolutionary and genetic research.Here,we present a high-quality genome for E.vivipara,representing the first chromosome-level genome for the Eleocharis genus,with an approximate size of 965.22 Mb mainly distributed across 10 chromosomes.Its Hi–C pattern,chromosome clustering results,and one-to-one genome synteny across two subgroups indicates a tetraploid structure with chromosome count 2n=4x=20.Phylogenetic analysis suggests that E.vivipara diverged from Cyperus esculentus approximately 32.96million years ago(Mya),and underwent a wholegenome duplication(WGD)about 3.5 Mya.Numerous fusion and fission events were identified between the chromosomes of E.vivipara and its close relatives.We demonstrate that E.vivipara has holocentromeres,a chromosomal feature which can maintain the stability of such chromosomal rearrangements.Experimental transplantation and cross-section studies showed its terrestrial culms developed C_(4)Kranz anatomy with increased number of chloroplasts in the bundle sheath(BS)cells.Gene expression and weighted gene co-expression network analysis(WGCNA)showed overall elevated expression of core genes associated with the C_(4)pathway,and significant enrichment of genes related to modified culm anatomy and photosynthesis efficiency.We found evidence of mixed nicotinamide adenine dinucleotide-malic enzyme and phosphoenolpyruvate carboxykinase type C_(4)photosynthesis in E.vivipara,and hypothesize that the evolution of C_(4)photosynthesis predates the WGD event.The mixed type is dominated by subgenome A and supplemented by subgenome B.Collectively,our findings not only shed light on the evolution of E.vivipara and karyotype within the Cyperaceae family,but also provide valuable insights into the transition between C_(3)and C_(4)photosynthesis,offering promising avenues for crop improvement and breeding.