期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
RECQL4 regulates DNA damage response and redox homeostasis in esophageal cancer 被引量:2
1
作者 Guosheng Lyu Peng Su +6 位作者 Xiaohe Hao Shiming Chen Shuai Ren Zixiao Zhao Yaoqin Gong Qiao Liu Changshun Shao 《Cancer Biology & Medicine》 SCIE CAS CSCD 2021年第1期120-138,共19页
Objective:RECQL4(a member of the RECQ helicase family)upregulation has been reported to be associated with tumor progression in several malignancies.However,whether RECQL4 sustains esophageal squamous cell carcinoma(E... Objective:RECQL4(a member of the RECQ helicase family)upregulation has been reported to be associated with tumor progression in several malignancies.However,whether RECQL4 sustains esophageal squamous cell carcinoma(ESCC)has not been elucidated.In this study,we determined the functional role for RECQL4 in ESCC progression.Methods:RECQL4 expression in clinical samples of ESCC was examined by immunohistochemistry.Cell proliferation,cellular senescence,the epithelial-mesenchymal transition(EMT),DNA damage,and reactive oxygen species in ESCC cell lines with RECQL4 depletion or overexpression were analyzed.The levels of proteins involved in the DNA damage response(DDR),cell cycle progression,survival,and the EMT were determined by Western blot analyses.Results:RECQL4 was highly expressed in tumor tissues when compared to adjacent non-tumor tissues in ESCC(P<0.001)and positively correlated with poor differentiation(P=0.011),enhanced invasion(P=0.033),and metastasis(P=0.048).RECQL4 was positively associated with proliferation and migration in ESCC cells.Depletion of RECQL4 also inhibited growth of tumor xenografts in vivo.RECQL4 depletion induced G0/G1 phase arrest and cellular senescence.Importantly,the levels of DNA damage and reactive oxygen species were increased when RECQL4 was depleted.DDR,as measured by the activation of ATM,ATR,CHK1,and CHK2,was impaired.RECQL4 was also shown to promote the activation of AKT,ERK,and NF-k B in ESCC cells.Conclusions:The results indicated that RECQL4 was highly expressed in ESCC and played critical roles in the regulation of DDR,redox homeostasis,and cell survival. 展开更多
关键词 ESCC RECQL4 SENESCENCE redox dna damage response
下载PDF
Evaluation of 30 DNA damage response and 6 mismatch repair gene mutations as biomarkers for immunotherapy outcomes across multiple solid tumor types
2
作者 Zhe Gong Yue Yang +1 位作者 Jieyun Zhang Weijian Guo 《Cancer Biology & Medicine》 SCIE CAS CSCD 2021年第4期1080-1091,共12页
Objective:DNA damage response(DDR)genes have low mutation rates,which may restrict their clinical applications in predicting the outcomes of immune checkpoint inhibitor(ICI)treatment.Thus,a systemic analysis of multip... Objective:DNA damage response(DDR)genes have low mutation rates,which may restrict their clinical applications in predicting the outcomes of immune checkpoint inhibitor(ICI)treatment.Thus,a systemic analysis of multiple DDR genes is needed to identify potential biomarkers of ICI efficacy.Methods:A total of 39,631 patients with mutation data were selected from the cBioPortal database.A total of 155 patients with mutation data were obtained from the Fudan University Shanghai Cancer Center(FUSCC).A total of 1,660 patients from the MSK-IMPACT cohort who underwent ICI treatment were selected for survival analysis.A total of 249 patients who underwent ICI treatment from the Dana-Farber Cancer Institute(DFCI)cohort were obtained from a published dataset.The Cancer Genome Atlas(TCGA)level 3 RNA-Seq version 2 RSEM data for gastric cancer were downloaded from cBioPortal.Results:Six MMR and 30 DDR genes were included in this study.Six MMR and 20 DDR gene mutations were found to predict the therapeutic efficacy of ICI,and most of them predicted the therapeutic efficacy of ICI,in a manner dependent on TMB,except for 4 combined DDR gene mutations,which were associated with the therapeutic efficacy of ICI independently of the TMB.Single MMR/DDR genes showed low mutation rates;however,the mutation rate of all the MMR/DDR genes associated with the therapeutic efficacy of ICI was relatively high,reaching 10%–30%in several cancer types.Conclusions:Coanalysis of multiple MMR/DDR mutations aids in selecting patients who are potential candidates for immunotherapy. 展开更多
关键词 Immune checkpoint inhibitor therapy prediction of efficacy tumor mutation burden mismatch repair deficiency dna damage response genes
下载PDF
Kinetochore protein MAD1 participates in the DNA damage response through ataxia-telangiectasia mutated kinase-mediated phosphorylation and enhanced interaction with KU80
3
作者 Mingming Xiao Xuesong Li +7 位作者 Yang Su Zhuang Liu Yamei Han Shuai Wang Qinghua Zeng Hong Liu Jianwei Hao Bo Xu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2020年第3期640-651,共12页
Objective:Mitotic arrest-deficient protein 1(MAD1)is a kinetochore protein essential for the mitotic spindle checkpoint.Proteomic studies have indicated that MAD1 is a component of the DNA damage response(DDR)pathway.... Objective:Mitotic arrest-deficient protein 1(MAD1)is a kinetochore protein essential for the mitotic spindle checkpoint.Proteomic studies have indicated that MAD1 is a component of the DNA damage response(DDR)pathway.However,whether and how MAD1 might be directly involved in the DDR is largely unknown.Methods:We ectopically expressed the wild type,or a phosphorylation-site--mutated form of MAD1 in MAD1 knockdown cells to look for complementation effects.We used the comet assay,colony formation assay,immunofluorescence staining,and flow cytometry to assess the DDR,radiosensitivity,and the G2/M checkpoint.We employed co-immunoprecipitation followed by mass spectrometry to identify MAD1 interacting proteins.Data were analyzed using the unpaired Student'st-test.Results:We showed that MAD1 was required for an optimal DDR,as knocking down MAD1 resulted in impaired DNA repair and hypersensitivity to ionizing radiation(IR).We found that IR-induced serine 214 phosphorylation was ataxia-telangiectasia mutated(ATM)kinase-dependent.Mutation of serine 214 to alanine failed to rescue the phenotypes of MAD1 knockdown cells in response to IR.Using mass spectrometry,we identified a protein complex mediated by MAD1 serine 214 phosphorylation in response to IR.Among them,we showed that KU80 was a key protein that displayed enhanced interaction with MAD1 after DNA damage.Finally,we showed that MAD1 interaction with KU80 required serine 214 phosphorylation,and it was essential for activation of DNA protein kinases catalytic subunit(DNA-PKcs).Conclusions:MAD1 serine 214 phosphorylation mediated by ATM kinase in response to IR was required for the interaction with KU80 and activation of DNA-PKCs. 展开更多
关键词 dna damage response ataxia-telangiectasia mutated kinase(ATM) mitotic arrest-deficient protein 1(MAD1) KU80 protein dna-PKCS
下载PDF
cGAS regulates the DNA damage response to maintain proliferative signaling in gastric cancer cells
4
作者 BIN LIU HAIPENG LIU +12 位作者 FEIFEI REN HANGFAN LIU IHTISHAM BUKHARI YUMING FU WANQINGWU MINGHAI ZHAO SHAOGONG ZHU HUI MO FAZHAN LI MICHAEL B.ZHENG YOUCAI TANG PENGYUAN ZHENG YANG MI 《Oncology Research》 SCIE 2021年第2期87-103,共17页
The activation of some oncogenes promote cancer cell proliferation and growth,facilitate cancer progression and metastasis by induce DNA replication stress,even genome instability.Activation of the cyclic GMP-AMP synt... The activation of some oncogenes promote cancer cell proliferation and growth,facilitate cancer progression and metastasis by induce DNA replication stress,even genome instability.Activation of the cyclic GMP-AMP synthase(cGAS)mediates classical DNA sensing,is involved in genome instability,and is linked to various tumor development or therapy.However,the function of cGAS in gastric cancer remains elusive.In this study,the TCGA database and retrospective immunohistochemical analyses revealed substantially high cGAS expression in gastric cancer tissues and cell lines.By employing cGAS high-expression gastric cancer cell lines,including AGS and MKN45,ectopic silencing of cGAS caused a significant reduction in the proliferation of the cells,tumor growth,and mass in xenograft mice.Mechanistically,database analysis predicted a possible involvement of cGAS in the DNA damage response(DDR),further data through cells revealed protein interactions of the cGAS and MRE11-RAD50-NBN(MRN)complex,which activated cell cycle checkpoints,even increased genome instability in gastric cancer cells,thereby contributing to gastric cancer progression and sensitivity to treatment with DNA damaging agents.Furthermore,the upregulation of cGAS significantly exacerbated the prognosis of gastric cancer patients while improving radiotherapeutic outcomes.Therefore,we concluded that cGAS is involved in gastric cancer progression by fueling genome instability,implying that intervening in the cGAS pathway could be a practicable therapeutic approach for gastric cancer. 展开更多
关键词 Gastric cancer Cell proliferation cGAS dna damage response MRN complex
下载PDF
Histone post-translational modification and the DNA damage response
5
作者 Haoyun Song Rong Shen +4 位作者 Xiangwen Liu Xuguang Yang Kun Xie Zhao Guo Degui Wang 《Genes & Diseases》 SCIE CSCD 2023年第4期1429-1444,共16页
DNA is highly vulnerable to spontaneous and environmental timely damage in living cells.DNA damage may cause genetic instability and increase cancer risk if the damages are not repaired timely and efficiently.Human ce... DNA is highly vulnerable to spontaneous and environmental timely damage in living cells.DNA damage may cause genetic instability and increase cancer risk if the damages are not repaired timely and efficiently.Human cells possess several DNA damage response(DDR)mechanisms to protect the integrity of their genome.Clarification of the mechanisms under-lying the DNA damage response following lethal damage will facilitate the identification of therapeutic targets for cancers.Histone post-translational modifications(PTMs)have been indicated to play different roles in the repair of DNA damage.In this context,histone PTMs regulate recruitment of downstream effectors,and facilitate appropriate repair response.This review outlines the current understanding of different histone PTMs in response to DNA dam-age repair,besides,enumerates the role of new type PTMs such as histone succinylation and crotonylation in regulating DNA damage repair processes. 展开更多
关键词 dna damage dna damage response HISTONE Post-translational modifications(PTMs)
原文传递
Alterations of DNA damage response pathway:Biomarker and therapeutic strategy for cancer immunotherapy 被引量:12
6
作者 Minlin Jiang Keyi Jia +7 位作者 Lei Wang Wei Li Bin Chen Yu Liu Hao Wang Sha Zhao Yayi He Caicun Zhou 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2021年第10期2983-2994,共12页
Genomic instability remains an enabling feature of cancer and promotes malignant transformation.Alterations of DNA damage response(DDR)pathways allow genomic instability,generate neoantigens,upregulate the expression ... Genomic instability remains an enabling feature of cancer and promotes malignant transformation.Alterations of DNA damage response(DDR)pathways allow genomic instability,generate neoantigens,upregulate the expression of programmed death ligand 1(PD-L1)and interact with signaling such as cyclic GMPe AMP synthase-stimulator of interferon genes(cGASe STING)signaling.Here,we review the basic knowledge of DDR pathways,mechanisms of genomic instability induced by DDR alterations,impacts of DDR alterations on immune system,and the potential applications of DDR alterations as biomarkers and therapeutic targets in cancer immunotherapy. 展开更多
关键词 dna damage response dna repair IMMUNOTHERAPY Genomic instability Tumor microenvironment PD-1 PD-L1 cGASe STING
原文传递
The role of BRCA1 in DNA damage response 被引量:9
7
作者 Jiaxue Wu Lin-Yu Lu Xiaochun Yu 《Protein & Cell》 SCIE CSCD 2010年第2期117-123,共7页
BRCA1 is a well-established tumor suppressor gene,which is frequently mutated in familial breast and ovarian cancers.The gene product of BRCA1 functions in a number of cellular pathways that maintain genomic stability... BRCA1 is a well-established tumor suppressor gene,which is frequently mutated in familial breast and ovarian cancers.The gene product of BRCA1 functions in a number of cellular pathways that maintain genomic stability,including DNA damage-induced cell cycle checkpoint activation,DNA damage repair,protein ubiquitination,chromatin remodeling,as well as transcriptional regulation and apoptosis.In this review,we discuss recent advances regarding our understanding of the role of BRCA1 in tumor suppression and DNA damage response,including DNA damage-induced cell cycle checkpoint activation and DNA damage repair. 展开更多
关键词 BRCA1 dna damage response TUMORIGENESIS
原文传递
Upregulation of the APE1 and H2AX genes and miRNAs involved in DNA damage response and repair in gastric cancer 被引量:6
8
作者 Fernanda S.Manoel-Caetano Ana Flávia T.Rossi +2 位作者 Gabriela Calvet de Morais Fábio Eduardo Severino Ana Elizabete Silva 《Genes & Diseases》 SCIE 2019年第2期176-184,共9页
Gastric cancer remains one of the leading causes of cancer-related death worldwide,and most of the cases are associated with Helicobacter pylori infection.This bacterium promotes the production of reactive oxygen spec... Gastric cancer remains one of the leading causes of cancer-related death worldwide,and most of the cases are associated with Helicobacter pylori infection.This bacterium promotes the production of reactive oxygen species(ROS),which cause DNA damage in gastric epithelial cells.In this study,we evaluated the expression of important genes involved in the recognition of DNA damage(ATM,ATR,and H2AX)and ROS-induced damage repair(APE1)and the expression of some miRNAs(miR-15a,miR-21,miR-24,miR-421 and miR-605)that target genes involved in the DNA damage response(DDR)in 31 fresh tissues of gastric cancer.Cytoscape v3.1.1 was used to construct the postulated miRNA:mRNA interaction network.Analysis performed by real-time quantitative PCR exhibited significantly increased levels of the APE1(RQ=2.55,p<0.0001)and H2AX(RQ=2.88,p=0.0002)genes beyond the miR-421 and miR-605 in the gastric cancer samples.In addition,significantly elevated levels of miR-21,miR-24 and miR-421 were observed in diffuse-type gastric cancer.Correlation analysis reinforced some of the gene:gene(ATM/ATR/H2AX)and miRNA:mRNA relationships obtained also with the interaction network.Thus,our findings show that tumor cells from gastric cancer presents deregulation of genes and miRNAs that participate in the recognition and repair of DNA damage,which could confer an advantage to cell survival and proliferation in the tumor microenvironment. 展开更多
关键词 dna damage response dna repair Gastric cancer Gene expression microRNA
原文传递
MicroRNAs:new players in the DNA damage response 被引量:2
9
作者 Hailiang Hu Richard A.Gatti 《Journal of Molecular Cell Biology》 SCIE CAS CSCD 北大核心 2011年第3期151-158,共8页
The DNA damage response(DDR)is a signal transduction pathway that decides the cell’s fate either to repair DNA damage or to undergo apoptosis if there is too much damage.Post-translational modifications modulate the ... The DNA damage response(DDR)is a signal transduction pathway that decides the cell’s fate either to repair DNA damage or to undergo apoptosis if there is too much damage.Post-translational modifications modulate the assembly and activity of protein complexes during the DDR pathways.MicroRNAs(miRNAs)are emerging as a class of endogenous gene modulators that control protein levels,thereby adding a new layer of regulation to the DDR.In this review,we describe a new role for miRNAs in regulating the cellular response to DNA damage with a focus on DNA double-strand break damage.We also discuss the implications of miRNA’s role in the DDR to stem cells,including embryonic stem cells and cancer stem cells,stressing the potential applications for miRNAs to be used as sensitizers for cancer radiotherapy and chemotherapy. 展开更多
关键词 MICRORNA dna damage response RADIOSENSITIVITY stem cells
原文传递
The genomics of desmoplastic small round cell tumor reveals the deregulation of genes related to DNA damage response, epithelial-mesenchymal transition, and immune response 被引量:2
10
作者 Andrea Devecchi Loris De Cecco +7 位作者 Matteo Dugo Donata Penso Gianpaolo Dagrada Silvia Brich Silvia Stacchiotti Marialuisa Sensi Silvana Canevari Silvana Pilotti 《Cancer Communications》 SCIE 2018年第1期745-758,共14页
Background:Desmoplastic small round cell tumor(DSRCT)is a rare,aggressive,and poorly investigated simple sarcoma with a low frequency of genetic deregulation other than an Ewing sarcoma RNA binding protein 1(EWSR1)-W... Background:Desmoplastic small round cell tumor(DSRCT)is a rare,aggressive,and poorly investigated simple sarcoma with a low frequency of genetic deregulation other than an Ewing sarcoma RNA binding protein 1(EWSR1)-Wilm’s tumor suppressor(WT1)translocation.We used whole-exome sequencing to interrogate six consecutive pretreated DSRCTs whose gene expression was previously investigated.Methods:DNA libraries were prepared from formalin-fixed,paraffin-embedded archival tissue specimens following the Agilent SureSelectXT2 target enrichment protocol and sequenced on Illumina NextSeq 500.Raw sequence data were aligned to the reference genome with Burrows-Wheeler Aligner algorithm.Somatic mutations and copy number alterations(CNAs)were identified using MuTect2 and EXCAVATOR2,respectively.Biological functions associated with altered genes were investigated through Ingenuity Pathway Analysis(IPA)software.Results:A total of 137 unique somatic mutations were identified:133 mutated genes were case-specific,and 2 were mutated in two cases but in different positions.Among the 135 mutated genes,27%were related to two biological categories:DNA damage-response(DDR)network that was also identified through IPA and mesenchymal-epithelial reverse transition(MErT)/epithelial-mesenchymal transition(EMT)already demonstrated to be relevant in DSRCT.The mutated genes in the DDR network were involved in various steps of transcription and particularly affected pre-mRNA.Half of these genes encoded RNA-binding proteins or DNA/RNA-binding proteins,which were recently rec-ognized as a new class of DDR players.CNAs in genes/gene families,involved in MErT/EMT and DDR,were recurrent across patients and mostly segregated in the MErT/EMT category.In addition,recurrent gains of regions in chromosome 1 involving many MErT/EMT gene families and loss of one arm or the entire chromosome 6 affecting relevant immune-regulatory genes were recorded.Conclusions:The emerging picture is an extreme inter-tumor heterogeneity,characterized by the concurrent deregulation of the DDR and MErT/EMT dynamic and plastic programs that could favour genomic instability and explain the refractory DSRCT profile. 展开更多
关键词 Desmoplastic small round cell tumor Whole-exome sequencing Somatic mutations Copy number alterations Chromosome imbalance dna damage response Genomic stability Mesenchymal-epithelial reverse transition/epithelial-mesenchymal transition Immune response
原文传递
Targeting of PI3K/AKT signaling and DNA damage response in acute myeloid leukemia: a novel therapeutic strategy to boost chemotherapy response and overcome resistance 被引量:1
11
作者 Montserrat Estruch Camilla Vittori +2 位作者 Teresa Muñoz Montesinos Kristian Reckzeh Kim Theilgaard-Mönch 《Cancer Drug Resistance》 2021年第4期984-995,共12页
Resistance of cancer patients to DNA damaging radiation therapy and chemotherapy remains a major problem in the clinic.The current review discusses the molecular mechanisms of therapy resistance in acute myeloid leuke... Resistance of cancer patients to DNA damaging radiation therapy and chemotherapy remains a major problem in the clinic.The current review discusses the molecular mechanisms of therapy resistance in acute myeloid leukemia(AML)conferred by cooperative chemotherapy-induced DNA damage response(DDR)and mutational activation of PI3K/AKT signaling.In addition,strategies to overcome resistance are discussed,with particular focus on studies underpinning the vast potential of therapies combining standard chemotherapy AML regimens with small molecule inhibitors targeting key regulatory hubs at the interface of DDR and oncogenic signaling pathways. 展开更多
关键词 dna damage response PI3K/AKT CHEMOTHERAPY RESISTANCE AML
原文传递
Chemical screen identifies shikonin as a broad DNA damage response inhibitor that enhances chemotherapy through inhibiting ATM and ATR
12
作者 Fangfang Wang Sora Jin +6 位作者 Franklin Mayca Pozo Danmei Tian Xiyang Tang Yi Dai Xinsheng Yao Jinshan Tang Youwei Zhang 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2022年第3期1339-1350,共12页
DNA damage response(DDR)is a highly conserved genome surveillance mechanism that preserves cell viability in the presence of chemotherapeutic drugs.Hence,small molecules that inhibit DDR are expected to enhance the an... DNA damage response(DDR)is a highly conserved genome surveillance mechanism that preserves cell viability in the presence of chemotherapeutic drugs.Hence,small molecules that inhibit DDR are expected to enhance the anti-cancer effect of chemotherapy.Through a recent chemical library screen,we identified shikonin as an inhibitor that strongly suppressed DDR activated by various chemotherapeutic drugs in cancer cell lines derived from different origins.Mechanistically,shikonin inhibited the activation of ataxia telangiectasia mutated(ATM),and to a lesser degree ATM and RAD3-related(ATR),two master upstream regulators of the DDR signal,through inducing degradation of ATM and ATR-interacting protein(ATRIP),an obligate associating protein of ATR,respectively.As a result of DDR inhibition,shikonin enhanced the anti-cancer effect of chemotherapeutic drugs in both cell cultures and in mouse models.While degradation of ATRIP is proteasome dependent,that of ATM depends on caspase-and lysosome-,but not proteasome.Overexpression of ATM significantly mitigated DDR inhibition and cell death induced by shikonin and chemotherapeutic drugs.These novel findings reveal shikonin as a pan DDR inhibitor and identify ATM as a primary factor in determining the chemo sensitizing effect of shikonin.Our data may facilitate the development of shikonin and its derivatives as potential chemotherapy sensitizers through inducing ATM degradation. 展开更多
关键词 Chemical screen SHIKONIN dna damage response ATM ATR ATRIP Protein degradation Chemo sensitizing
原文传递
DNA methylation changes induced by BDE-209 are related to DNA damage response and germ cell development in GC-2spd
13
作者 Xiangyang Li Yue Zhang +5 位作者 Xiaomin Dong Guiqing Zhou Yujian Sang Leqiang Gao Xianqing Zhou Zhiwei Sun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第11期161-170,共10页
Decabrominated diphenyl ether(BDE-209)is generally utilized in multiple polymer materials as common brominated flame retardant.BDE-209 has been listed as persistent organic pollutants(POPs),which was considered to be ... Decabrominated diphenyl ether(BDE-209)is generally utilized in multiple polymer materials as common brominated flame retardant.BDE-209 has been listed as persistent organic pollutants(POPs),which was considered to be reproductive toxin in the environment.But it still remains unclear about the effects of BDE-209 on DNA methylation and the inducedmale reproductive toxicity.Due to the extensive epigenetic regulation in germ line development,we hypothesize that BDE-209 exposure impacts the statue of DNA methylation in spermatocytes in vitro.Therefore,the mouse GC-2spd(GC-2)cells were used for the genome wide DNA methylation analysis after treated with 32μg/mL BDE-209 for 24 hr.The results showed that BDE-209 caused genomic methylation changes with 32,083 differentially methylated CpGs in GC-2 cells,including 16,164(50.38%)hypermethylated and 15,919(49.62%)hypomethylated sites.With integrated analysis ofDNAmethylation data and functional enrichment,we found that BDE-209 might affect the functional transcription in cell growth and sperm development by differential gene methylation.qRT-PCR validation demonstrated the involvement of p53-dependent DNA damage response in the GC-2 cells after BDE-209 exposure.In general,our findings indicated that BDE-209-induced genome wide methylation changes could be interrelated with reproductive dysfunction.This study might provide new insights into the mechanisms of male reproductive toxicity under the environmental exposure to BDE-209. 展开更多
关键词 Decabrominated diphenyl ether (BDE-209) dna methylation Functional enrichment dna damage response Germ cell development GC-2spd
原文传递
Ataxia-telangiectasia mutated plays an important role in cerebellar integrity and functionality
14
作者 Yulia Mitiagin Ari Barzilai 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期497-502,共6页
Accumulating evidence indicates that ataxia-telangiectasia mutated kinase is critical for maintaining cellular homeostasis and that it has both nuclear and cytoplasmic functions.However,the functions of ataxia-telangi... Accumulating evidence indicates that ataxia-telangiectasia mutated kinase is critical for maintaining cellular homeostasis and that it has both nuclear and cytoplasmic functions.However,the functions of ataxia-telangiectasia mutated that when lost lead to cerebellar degeneration are still unknown.In this review,we first describe the role of ataxia-telangiectasia mutated in cerebellar pathology.In addition to its canonical nuclear functions in DNA damage response circuits,ataxia-telangiectasia mutated functions in various cytoplasmic and mitochondrial processes that are critically important for cellular homeostasis.We discuss these functions with a focus on the role of ataxia-telangiectasia mutated in maintaining the homeostatic redox state.Finally,we describe the unique functions of ataxia-telangiectasia mutated in various types of neuronal and glial cells including cerebellar granule neurons,astrocytes,and microglial cells. 展开更多
关键词 ataxia telangiectasia ATM CEREBELLUM dna damage response double-strand breaks mitochondrial dysfunction oxidative stress single-strand breaks
下载PDF
TBC1D15 deficiency protects against doxorubicin cardiotoxicity via inhibiting DNAPKcs cytosolic retention and DNA damage
15
作者 Wenjun Yu Haixia Xu +8 位作者 Zhe Sun Yuxin Du Shiqun Sun Miyesaier Abudureyimu Mengjiao Zhang Jun Tao Junbo Ge Jun Ren Yingmei Zhang 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第12期4823-4839,共17页
Clinical application of doxorubicin(DOX)is heavily hindered by DOX cardiotoxicity.Several theories were postulated for DOX cardiotoxicity including DNA damage and DNA damage response(DDR),although the mechanism(s)invo... Clinical application of doxorubicin(DOX)is heavily hindered by DOX cardiotoxicity.Several theories were postulated for DOX cardiotoxicity including DNA damage and DNA damage response(DDR),although the mechanism(s)involved remains to be elucidated.This study evaluated the potential role of TBC domain family member 15(TBC1D15)in DOX cardiotoxicity.Tamoxifen-induced cardiac-specific Tbcldi5 knockout(Tbcldi5^(CKO))or Tbcldi5 knockin(Tbcldi5^(CKI))male mice were challenged with a single dose of DOx prior to cardiac assessment 1 week or 4 weeks following DOX challenge.Adenoviruses encoding TBC1D15 or containing shRNA targeting Tbcld15 were used for Tbcld15 overexpression or knockdown in isolated primary mouse cardiomyocytes.Our results re-vealed that DOX evoked upregulation of TBC1D15 with compromised myocardial function and overt mortality,the effects of which were ameliorated and accentuated by Tbcldi5 deletion and Tbcld15 overexpression,respectively.DOX overtly evoked apoptotic cell death,the effect of which was alleviated and exacerbated by Tbcld15 knockout and overexpression,respectively.Meanwhile,DOX provoked mitochondrial membrane potential collapse,oxidative stress and DNA damage,the effects of which were mitigated and exacerbated by Tbcld15 knockdown and overexpression,respectively.Further scrutiny revealed that TBC1D15 fostered cytosolic accumulation of the cardinal DDR element DNA-dependent protein kinase catalytic subunit(DNA-PKcs).Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation denoted an interaction between TBCID15 and DNA-PKcs at the segment 594-624 of TBC1D15.Moreover,overexpression of TBC1D15 mutant(A594-624,deletion of segment 594-624)failed to elicit accentuation of DOX-induced cytosolic retention of DNA-PKcs,DNA damage and cardiomyocyte apoptosis by TBC1D15 wild type.However,Tbcld15 deletion ameliorated DOXinduced cardiomyocyte contractile anomalies,apoptosis,mitochondrial anomalies,DNA damage and cytosolic DNA-PKcs accumulation,which were canceled off by DNA-PKcs inhibition or ATM activation.Taken together,our findings denoted a pivotal role for TBCID15 in DOX-induced DNA damage,mitochondrial injury,and apoptosis possibly through binding with DNA-PKcs and thus gate-keeping its cytosolic retention,a route to accentuation of cardiac contractile dysfunction in DOX-induced cardiotoxicity. 展开更多
关键词 DOXORUBICIN CARDIOTOXICITY dna damage dna damage response Mitochondrial anomalies Cardiomyocyte apoptosis TBC1D15 dna-PKCS
原文传递
Inhibition of Ciliogenesis Enhances the Cellular Sensitivity to Temozolomide and Ionizing Radiation in Human Glioblastoma Cells
16
作者 WEI Li MA Wei +5 位作者 CAI Hui PENG Shao Peng TIAN Huan Bing WANG Ju Fang GAO Lan HE Jin Peng 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2022年第5期419-436,共18页
Objective To investigate the function of primary cilia in regulating the cellular response to temozolomide(TMZ)and ionizing radiation(IR)in glioblastoma(GBM).Methods GBM cells were treated with TMZ or X-ray/carbon ion... Objective To investigate the function of primary cilia in regulating the cellular response to temozolomide(TMZ)and ionizing radiation(IR)in glioblastoma(GBM).Methods GBM cells were treated with TMZ or X-ray/carbon ion.The primary cilia were examined by immunostaining with Arl13 b andγ-tubulin,and the cellular resistance ability was measured by cell viability assay or survival fraction assay.Combining with cilia ablation by IFT88 depletion or chloral hydrate and induction by lithium chloride,the autophagy was measured by acridine orange staining assay.The DNA damage repair ability was estimated by the kinetic curve ofγH2 AX foci,and the DNAdependent protein kinase(DNA-PK)activation was detected by immunostaining assay.Results Primary cilia were frequently preserved in GBM,and the induction of ciliogenesis decreased cell proliferation.TMZ and IR promoted ciliogenesis in dose-and time-dependent manners,and the suppression of ciliogenesis significantly enhanced the cellular sensitivity to TMZ and IR.The inhibition of ciliogenesis elevated the lethal effects of TMZ and IR via the impairment of autophagy and DNA damage repair.The interference of ciliogenesis reduced DNA-PK activation,and the knockdown of DNA-PK led to cilium formation and elongation.Conclusion Primary cilia play a vital role in regulating the cellular sensitivity to TMZ and IR in GBM cells through mediating autophagy and DNA damage repair. 展开更多
关键词 Primary cilia GLIOBLASTOMA Cellular sensitivity TEMOZOLOMIDE Ionizing radiation Autophagy dna damage response dna-PK
下载PDF
Mass spectrometry-based protein-protein interaction techniques and their applications in studies of DNA damage repair
17
作者 Zhen CHEN Junjie CHEN 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2021年第1期1-20,共20页
Proteins are major functional units that are tightly connected to form complex and dynamic networks.These networks enable cells and organisms to operate properly and respond efficiently to environmental cues.Over the ... Proteins are major functional units that are tightly connected to form complex and dynamic networks.These networks enable cells and organisms to operate properly and respond efficiently to environmental cues.Over the past decades,many biochemical methods have been developed to search for protein-binding partners in order to understand how protein networks are constructed and connected.At the same time,rapid development in proteomics and mass spectrometry(MS)techniques makes it possible to identify interacting proteins and build comprehensive protein-protein interaction networks.The resulting interactomes and networks have proven informative in the investigation of biological functions,such as in the field of DNA damage repair.In recent years,a number of proteins involved in DNA damage response and DNA repair pathways have been uncovered with MS-based protein-protein interaction studies.As the technologies for enriching associated proteins and MS become more sophisticated,the studies of protein-protein interactions are entering a new era.In this review,we summarize the strategies and recent developments for exploring protein-protein interaction.In addition,we discuss the application of these tools in the investigation of protein-protein interaction networks involved in DNA damage response and DNA repair. 展开更多
关键词 Protein-protein interaction INTERACTOME PROTEOMICS Mass spectrometry dna repair dna damage response
原文传递
Low complexity domains, condensates, and stem cell pluripotency
18
作者 Munender Vodnala Eun-Bee Choi Yick W Fong 《World Journal of Stem Cells》 SCIE 2021年第5期416-438,共23页
Biological reactions require self-assembly of factors in the complex cellular milieu.Recent evidence indicates that intrinsically disordered,low-complexity sequence domains(LCDs)found in regulatory factors mediate div... Biological reactions require self-assembly of factors in the complex cellular milieu.Recent evidence indicates that intrinsically disordered,low-complexity sequence domains(LCDs)found in regulatory factors mediate diverse cellular processes from gene expression to DNA repair to signal transduction,by enriching specific biomolecules in membraneless compartments or hubs that may undergo liquidliquid phase separation(LLPS).In this review,we discuss how embryonic stem cells take advantage of LCD-driven interactions to promote cell-specific transcription,DNA damage response,and DNA repair.We propose that LCDmediated interactions play key roles in stem cell maintenance and safeguarding genome integrity. 展开更多
关键词 Liquid-liquid phase separation Embryonic stem cell PLURIPOTENCY Low complexity domain TRANSCRIPTION dna damage response
下载PDF
Prevention of DNA re-replication in eukaryotic cells
19
作者 Lan N.Truong Xiaohua Wu 《Journal of Molecular Cell Biology》 SCIE CAS CSCD 北大核心 2011年第1期13-22,共10页
DNA replication is a highly regulated process involving a number of licensing and replication factors that function in a carefully orchestrated manner to faithfully replicate DNA during every cell cycle.Loss of proper... DNA replication is a highly regulated process involving a number of licensing and replication factors that function in a carefully orchestrated manner to faithfully replicate DNA during every cell cycle.Loss of proper licensing control leads to deregulated DNA replication including DNA re-replication,which can cause genome instability and tumorigenesis.Eukaryotic organisms have established several conserved mechanisms to prevent DNA re-replication and to counteract its potentially harmful effects.These mechanisms include tightly controlled regulation of licensing factors and activation of cell cycle and DNA damage checkpoints.Deregulated licensing control and its associated compromised checkpoints have both been observed in tumor cells,indicating that proper functioning of these pathways is essential for maintaining genome stability.In this review,we discuss the regulatory mechanisms of licensing control,the deleterious consequences when both licensing and checkpoints are compromised,and present possible mechanisms to prevent re-replication in order to maintain genome stability. 展开更多
关键词 dna re-replication cell cycle checkpoints dna damage response CDT1 DSB repair genome stability TUMORIGENESIS
原文传递
The interplay of cell cycle and DNA repair gene alterations in upper tract urothelial carcinoma:predictive and prognostic implications
20
作者 Panagiotis J.Vlachostergios 《Precision Clinical Medicine》 2020年第3期153-160,共8页
Upper tract urothelial carcinoma(UTUC)is rare but can occur sporadically outside the context of Lynch syndrome.In these cases,knowing whether non-mismatch repair(MMR),DNA damage response and repair(DDR),and cell cycle... Upper tract urothelial carcinoma(UTUC)is rare but can occur sporadically outside the context of Lynch syndrome.In these cases,knowing whether non-mismatch repair(MMR),DNA damage response and repair(DDR),and cell cycle gene alterationsmay predict responses to chemotherapy orimmunotherapy and survival is of clinical importance.This study examined the germline and somatic mutational landscape of two UTUC patients with differential responses to programmed death 1(PD-1)/PD-ligand 1(PD-L1)immune checkpoint inhibitors and queried three independent UTUC cohort studies for co-occurrence of key cell cycle and DDR genes,as well as for their associations with overall survival(OS).TP53 and RB1 emerged as potential determinants of shorter OS in UTUC cohort patients,regardless of concurrent DDR alterations,and if prospectively assessed in larger studies they might also explain resistance to PD-1/PD-L1 blockade despite PD-L1 expression. 展开更多
关键词 upper tract urothelial carcinoma dna damage response and repair cell cycle genetic testing GENOMICS MUTATIONS
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部