期刊文献+
共找到2,078篇文章
< 1 2 104 >
每页显示 20 50 100
Statistical Data Mining with Slime Mould Optimization for Intelligent Rainfall Classification
1
作者 Ramya Nemani G.Jose Moses +4 位作者 Fayadh Alenezi K.Vijaya Kumar Seifedine Kadry Jungeun Kim Keejun Han 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期919-935,共17页
Statistics are most crucial than ever due to the accessibility of huge counts of data from several domains such as finance,medicine,science,engineering,and so on.Statistical data mining(SDM)is an interdisciplinary dom... Statistics are most crucial than ever due to the accessibility of huge counts of data from several domains such as finance,medicine,science,engineering,and so on.Statistical data mining(SDM)is an interdisciplinary domain that examines huge existing databases to discover patterns and connections from the data.It varies in classical statistics on the size of datasets and on the detail that the data could not primarily be gathered based on some experimental strategy but conversely for other resolves.Thus,this paper introduces an effective statistical Data Mining for Intelligent Rainfall Prediction using Slime Mould Optimization with Deep Learning(SDMIRPSMODL)model.In the presented SDMIRP-SMODL model,the feature subset selection process is performed by the SMO algorithm,which in turn minimizes the computation complexity.For rainfall prediction.Convolution neural network with long short-term memory(CNN-LSTM)technique is exploited.At last,this study involves the pelican optimization algorithm(POA)as a hyperparameter optimizer.The experimental evaluation of the SDMIRP-SMODL approach is tested utilizing a rainfall dataset comprising 23682 samples in the negative class and 1865 samples in the positive class.The comparative outcomes reported the supremacy of the SDMIRP-SMODL model compared to existing techniques. 展开更多
关键词 Statistical data mining predictive models deep learning rainfall prediction parameter tuning
下载PDF
Advances in Educational Data Mining Models and the Application of Its Algorithms
2
作者 Chi Zhang Huan Yan +2 位作者 Ying Fu Guofeng Han Fan Feng 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第6期32-40,共9页
In order to find an effective way to improve the quality of school management,finding valuable information from students' original data and providing feedback for student management are necessary. Firstly,some new... In order to find an effective way to improve the quality of school management,finding valuable information from students' original data and providing feedback for student management are necessary. Firstly,some new and successful educational data mining models were analyzed and compared. These models have better performance than traditional models( such as Knowledge Tracing Model) in efficiency,comprehensiveness,ease of use,stability and so on. Then,the neural network algorithm was conducted to explore the feasibility of the application of educational data mining in student management,and the results show that it has enough predictive accuracy and reliability to be put into practice. In the end,the possibility and prospect of the application of educational data mining in teaching management system for university students was assessed. 展开更多
关键词 educational data mining models student grade management neural network
下载PDF
The influence of heterogeneous environmental regulation on the green development of the mining industry: empirical analysis based on the system GMM and dynamic panel data model
3
作者 Wei Gao Jinghua Cheng Jun Zhang 《Chinese Journal of Population,Resources and Environment》 2019年第2期154-175,共22页
The intensity of environmental regulation (ERI) affects the short-term effect of the level of green mining (GML),and which structure determines the long-term mechanism.Based on the panel data from 2001 to 2015,with th... The intensity of environmental regulation (ERI) affects the short-term effect of the level of green mining (GML),and which structure determines the long-term mechanism.Based on the panel data from 2001 to 2015,with the dynamic panel model and system GMM estimation method were employed to test the influence of heterogeneous environmental regulation on green mining and its transmission mechanism.The results show that,there is a 'U' type nonlinear relationship between the ERI and GML.The direct effect of command-control-based (CAC) and the market incentive-based (MBI) environmental regulation on green development of mining shows the characteristics of inhibition and promotion.There is a 'U' type of indirectly moderating effect between technological innovation and the energy consumption structure on the GML.The technological innovation promotes the green development of the mining industry only after pass the inflection point of MBI,while the CAC plays a significant guiding role in upgrading of the energy consumption structure.There is an inhibition and promotion effect of MBI on the GML in the southeast coastal area,and the CAC is not significantly.Meanwhile,both of the ERI shows no positive effects in the central and western inland region. 展开更多
关键词 INTENSITY of ENVIRONMENTAL Regulation (ERI) green mining HETEROGENEOUS effects dynamic PANEL data model
下载PDF
The multiscale modeling and data mining of high-temperature dielectrics of SiO_2/SiO_2 composites
4
作者 袁杰 崔超 +1 位作者 侯志灵 曹茂盛 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第2期202-205,共4页
The high temperature dielectrics of Quartz fiber-reinforced silicon dioxide ceramic (Si02/SiO2 ) composites were studied both theoretically and experimentally. A multi-scale theoretical model was developed based on ... The high temperature dielectrics of Quartz fiber-reinforced silicon dioxide ceramic (Si02/SiO2 ) composites were studied both theoretically and experimentally. A multi-scale theoretical model was developed based on the theory of dielectrics. It was realized to predict dielectric properties at higher temperature ( 〉 1200 ℃) by experimental data mining for correlative coefficients in model. The results show that the dielectrics of SiO2/SiO2, which were calculated with the theoretical model, were in agreement with experimental measured value. 展开更多
关键词 multiscale modeling data mining high-temperature dielectric properties ceramic matrix composites
下载PDF
Development of a Modelling Script of Time Series Suitable for Data Mining
5
作者 Víctor Sanz-Fernández Remedios Cabrera +2 位作者 Rubén Muñoz-Lechuga Antonio Sánchez-Navas Ivone A. Czerwinski 《Open Journal of Statistics》 2016年第4期555-564,共11页
Data Mining has become an important technique for the exploration and extraction of data in numerous and various research projects in different fields (technology, information technology, business, the environment, ec... Data Mining has become an important technique for the exploration and extraction of data in numerous and various research projects in different fields (technology, information technology, business, the environment, economics, etc.). In the context of the analysis and visualisation of large amounts of data extracted using Data Mining on a temporary basis (time-series), free software such as R has appeared in the international context as a perfect inexpensive and efficient tool of exploitation and visualisation of time series. This has allowed the development of models, which help to extract the most relevant information from large volumes of data. In this regard, a script has been developed with the goal of implementing ARIMA models, showing these as useful and quick mechanisms for the extraction, analysis and visualisation of large data volumes, in addition to presenting the great advantage of being applied in multiple branches of knowledge from economy, demography, physics, mathematics and fisheries among others. Therefore, ARIMA models appear as a Data Mining technique, offering reliable, robust and high-quality results, to help validate and sustain the research carried out. 展开更多
关键词 data mining ARIMA models Time Series SCRIPT R
下载PDF
Topic Model Optimization and Data Mining under the eTOM Framework
6
作者 Ning Zhou Jian He Xuyi Chen 《通讯和计算机(中英文版)》 2010年第6期19-24,共6页
关键词 数据挖掘 ETOM 模型优化 中国移动通信公司 结构优化模型 框架 电信运营图 行业标准
下载PDF
Visualization Mining Methods of Telecom Companies' Topic Data Model
7
作者 Ning Zhou Jian He Jianhai Wang Zhen Zeng 《通讯和计算机(中英文版)》 2010年第5期30-35,共6页
关键词 可视化方法 挖掘方法 电信公司 数据模型 数据挖掘模型 电信运营图 企业信息化 可视化工具
下载PDF
A Time Series Data Mining Based on ARMA and MLFNN Model for Intrusion Detection
8
作者 Tianqi Yang 《通讯和计算机(中英文版)》 2006年第7期16-21,30,共7页
关键词 数据处理 网络技术 ARMA模型 MLFMN模型
下载PDF
抢先赢得商机的Data Mining──基于数据仓库的数据挖掘技术 被引量:2
9
作者 王春梅 王曙燕 《现代电子技术》 2006年第12期98-100,共3页
首先介绍了数据仓库以及在此技术上产生的数据挖掘技术,其次阐述了实现数据挖掘应用的几种工具以及选用工具时应遵循的原则,最后说明了数据挖掘技术现存的问题及他现在重要的商业地位。
关键词 数据仓库(DW) 数据挖掘 联机分析处理(OLAP) 建模
下载PDF
Foundation Study on Wireless Big Data: Concept, Mining, Learning and Practices 被引量:10
10
作者 Jinkang Zhu Chen Gong +2 位作者 Sihai Zhang Ming Zhao Wuyang Zhou 《China Communications》 SCIE CSCD 2018年第12期1-15,共15页
Facing the development of future 5 G, the emerging technologies such as Internet of things, big data, cloud computing, and artificial intelligence is enhancing an explosive growth in data traffic. Radical changes in c... Facing the development of future 5 G, the emerging technologies such as Internet of things, big data, cloud computing, and artificial intelligence is enhancing an explosive growth in data traffic. Radical changes in communication theory and implement technologies, the wireless communications and wireless networks have entered a new era. Among them, wireless big data(WBD) has tremendous value, and artificial intelligence(AI) gives unthinkable possibilities. However, in the big data development and artificial intelligence application groups, the lack of a sound theoretical foundation and mathematical methods is regarded as a real challenge that needs to be solved. From the basic problem of wireless communication, the interrelationship of demand, environment and ability, this paper intends to investigate the concept and data model of WBD, the wireless data mining, the wireless knowledge and wireless knowledge learning(WKL), and typical practices examples, to facilitate and open up more opportunities of WBD research and developments. Such research is beneficial for creating new theoretical foundation and emerging technologies of future wireless communications. 展开更多
关键词 WIRELESS big data data model data mining WIRELESS KNOWLEDGE KNOWLEDGE LEARNING future WIRELESS communications
下载PDF
Signal classification method based on data mining formulti-mode radar 被引量:9
11
作者 qiang guo pulong nan jian wan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1010-1017,共8页
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p... For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy. 展开更多
关键词 multi-mode radar signal classification data mining nuclear field cloud model membership.
下载PDF
Mining Weights of Land Evaluation Factors Based on Cloud Model and Correlation Analysis 被引量:17
12
作者 HU Shiyuan LI Deren +1 位作者 LIU Yaolin LI Deyi 《Geo-Spatial Information Science》 2007年第3期218-222,共5页
The veracity of land evaluation is tightly related to the reasonable weights of land evaluation fac- tors. By mapping qualitative linguistic words into a fine-changeable cloud drops and translating the uncertain facto... The veracity of land evaluation is tightly related to the reasonable weights of land evaluation fac- tors. By mapping qualitative linguistic words into a fine-changeable cloud drops and translating the uncertain factor conditions into quantitative values with the uncertain illation based on cloud model, and then, inte- grating correlation analysis, a new way of figuring out the weight of land evaluation factors is proposed. It may solve the limitations of the conventional ways. 展开更多
关键词 cloud models correlation analysis land evaluation factor weight data mining
下载PDF
Feature Selection with Optimal Stacked Sparse Autoencoder for Data Mining 被引量:4
13
作者 Manar Ahmed Hamza Siwar Ben Haj Hassine +5 位作者 Ibrahim Abunadi Fahd N.Al-Wesabi Hadeel Alsolai Anwer Mustafa Hilal Ishfaq Yaseen Abdelwahed Motwakel 《Computers, Materials & Continua》 SCIE EI 2022年第8期2581-2596,共16页
Data mining in the educational field can be used to optimize the teaching and learning performance among the students.The recently developed machine learning(ML)and deep learning(DL)approaches can be utilized to mine ... Data mining in the educational field can be used to optimize the teaching and learning performance among the students.The recently developed machine learning(ML)and deep learning(DL)approaches can be utilized to mine the data effectively.This study proposes an Improved Sailfish Optimizer-based Feature SelectionwithOptimal Stacked Sparse Autoencoder(ISOFS-OSSAE)for data mining and pattern recognition in the educational sector.The proposed ISOFS-OSSAE model aims to mine the educational data and derive decisions based on the feature selection and classification process.Moreover,the ISOFS-OSSAEmodel involves the design of the ISOFS technique to choose an optimal subset of features.Moreover,the swallow swarm optimization(SSO)with the SSAE model is derived to perform the classification process.To showcase the enhanced outcomes of the ISOFSOSSAE model,a wide range of experiments were taken place on a benchmark dataset from the University of California Irvine(UCI)Machine Learning Repository.The simulation results pointed out the improved classification performance of the ISOFS-OSSAE model over the recent state of art approaches interms of different performance measures. 展开更多
关键词 data mining pattern recognition feature selection data classification SSAE model
下载PDF
Enhancing disaster management effectiveness: An integrated analysis of key factors and practical strategies through Structural Equation Modeling (SEM)and scopus data text mining
14
作者 Samuel Mores Geddam C.A.Raj Kiran 《Geohazard Mechanics》 2024年第2期95-107,共13页
In the 21st century, the surge in natural and human-induced disasters necessitates robust disaster managementframeworks. This research addresses a critical gap, exploring dynamics in the successful implementation andp... In the 21st century, the surge in natural and human-induced disasters necessitates robust disaster managementframeworks. This research addresses a critical gap, exploring dynamics in the successful implementation andperformance monitoring of disaster management. Focusing on eleven key elements like Vulnerability and RiskAssessment, Training, Disaster Preparedness, Communication, and Community Resilience, the study utilizesScopus Database for secondary data, employing Text Mining and MS-Excel for analysis and data management.IBM SPSS (26) and IBM AMOS (20) facilitate Exploratory Factor Analysis (EFA) and Structural Equation Modeling(SEM) for model evaluation.The research raises questions about crafting a comprehensive, adaptable model, understanding the interplaybetween vulnerability assessment, training, and disaster preparedness, and integrating effective communicationand collaboration. Findings offer actionable insights for policy, practice, and community resilience against disasters. By scrutinizing each factor's role and interactions, the research lays the groundwork for a flexible model.Ultimately, the study aspires to cultivate more resilient communities amid the escalating threats of an unpredictable world, fostering effective navigation and thriving. 展开更多
关键词 Disaster Management Structural Equation modeling(SEM) Text mining Scopus data Exploratory Factor Analysis(EFA)
下载PDF
Data Mining for Mesoscopic Simulation of Electron Beam Selective Melting 被引量:1
15
作者 Ya Qian Wentao Yan Feng Lin 《Engineering》 SCIE EI 2019年第4期746-754,共9页
In the electron beam selective melting(EBSM)process,the quality of each deposited melt track has an effect on the properties of the manufactured component.However,the formation of the melt track is governed by various... In the electron beam selective melting(EBSM)process,the quality of each deposited melt track has an effect on the properties of the manufactured component.However,the formation of the melt track is governed by various physical phenomena and influenced by various process parameters,and the correlation of these parameters is complicated and difficult to establish experimentally.The mesoscopic modeling technique was recently introduced as a means of simulating the electron beam(EB)melting process and revealing the formation mechanisms of specific melt track morphologies.However,the correlation between the process parameters and the melt track features has not yet been quantitatively understood.This paper investigates the morphological features of the melt track from the results of mesoscopic simulation,while introducing key descriptive indexes such as melt track width and height in order to numerically assess the deposition quality.The effects of various processing parameters are also quantitatively investigated,and the correlation between the processing conditions and the melt track features is thereby derived.Finally,a simulation-driven optimization framework consisting of mesoscopic modeling and data mining is proposed,and its potential and limitations are discussed. 展开更多
关键词 ELECTRON beam SELECTIVE MELTING MESOSCOPIC modeling data mining
下载PDF
Mining multilevel spatial association rules with cloud models 被引量:2
16
作者 杨斌 朱仲英 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第3期314-318,共5页
The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates ... The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates the vague and random use of linguistic terms in a unified way. With these models, spatial and nonspatial attribute values are well generalized at multiple levels, allowing discovery of strong spatial association rules. Combining the cloud model based method with Apriori algorithms for mining association rules from a spatial database shows benefits in being effective and flexible. 展开更多
关键词 cloud model spatial association rules virtual cloud spatial data mining
下载PDF
Hydraulic metal structure health diagnosis based on data mining technology 被引量:3
17
作者 Guang-ming Yang Xiao Feng Kun Yang 《Water Science and Engineering》 EI CAS CSCD 2015年第2期158-163,共6页
In conjunction with association rules for data mining, the connections between testing indices and strong and weak association rules were determined, and new derivative rules were obtained by further reasoning. Associ... In conjunction with association rules for data mining, the connections between testing indices and strong and weak association rules were determined, and new derivative rules were obtained by further reasoning. Association rules were used to analyze correlation and check consistency between indices. This study shows that the judgment obtained by weak association rules or non-association rules is more accurate and more credible than that obtained by strong association rules. When the testing grades of two indices in the weak association rules are inconsistent, the testing grades of indices are more likely to be erroneous, and the mistakes are often caused by human factors. Clustering data mining technology was used to analyze the reliability of a diagnosis, or to perform health diagnosis directly. Analysis showed that the clustering results are related to the indices selected, and that if the indices selected are more significant, the characteristics of clustering results are also more significant, and the analysis or diagnosis is more credible. The indices and diagnosis analysis function produced by this study provide a necessary theoretical foundation and new ideas for the development of hydraulic metal structure health diagnosis technology. 展开更多
关键词 Hydraulic metal structure Health diagnosis data mining technology Clustering model Association rule
下载PDF
Parallelized User Clicks Recognition from Massive HTTP Data Based on Dependency Graph Model 被引量:1
18
作者 FANG Chcng LIU Jun LEI Zhenming 《China Communications》 SCIE CSCD 2014年第12期13-25,共13页
With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this pap... With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods. 展开更多
关键词 cloud computing massive data graph model web usage mining
下载PDF
BP Network Based Users’Interest Model in Mining WWW Cache
19
作者 ZHANG Wei-feng XU Bao-wen +2 位作者 ZHANG Xiao-fang CUI Zi-feng ZHOU Xiao-yu 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第1期243-247,共5页
By analyzing the WWW Cache model, we bring forward a user-interest description method based on the fuzzy theory and user-interest inferential relations based on BP(baek propagation) neural network. By this method, t... By analyzing the WWW Cache model, we bring forward a user-interest description method based on the fuzzy theory and user-interest inferential relations based on BP(baek propagation) neural network. By this method, the users' interest in the WWW cache can be described and the neural network of users' interest can be constructed by positive spread of interest and the negative spread of errors. This neural network can infer the users' interest. This model is not the simple extension of the simple interest model, but the round improvement of the model and its related algorithm. 展开更多
关键词 WWW Internet Interest model neural network data mining
下载PDF
Financial Data Modeling by Using Asynchronous Parallel Evolutionary Algorithms
20
作者 Wang Chun, Li Qiao-yunSchool of Business, Huazhong University of Science and Technology , Wuhan 4300741 Hubei ChinaNetwork and Software Technology Center of America, Sony Corporation San Jose, CA, USA 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期239-242,共4页
In this paper, the high-level knowledge of financial data modeled by ordinary differential equations (ODEs) is discovered in dynamic data by using an asynchronous parallel evolutionary modeling algorithm (APHEMA). A n... In this paper, the high-level knowledge of financial data modeled by ordinary differential equations (ODEs) is discovered in dynamic data by using an asynchronous parallel evolutionary modeling algorithm (APHEMA). A numerical example of Nasdaq index analysis is used to demonstrate the potential of APHEMA. The results show that the dynamic models automatically discovered in dynamic data by computer can be used to predict the financial trends. 展开更多
关键词 financial data mining asynchronous parallel algorithm knowledge discovery evolutionary modeling
下载PDF
上一页 1 2 104 下一页 到第
使用帮助 返回顶部