Statistics are most crucial than ever due to the accessibility of huge counts of data from several domains such as finance,medicine,science,engineering,and so on.Statistical data mining(SDM)is an interdisciplinary dom...Statistics are most crucial than ever due to the accessibility of huge counts of data from several domains such as finance,medicine,science,engineering,and so on.Statistical data mining(SDM)is an interdisciplinary domain that examines huge existing databases to discover patterns and connections from the data.It varies in classical statistics on the size of datasets and on the detail that the data could not primarily be gathered based on some experimental strategy but conversely for other resolves.Thus,this paper introduces an effective statistical Data Mining for Intelligent Rainfall Prediction using Slime Mould Optimization with Deep Learning(SDMIRPSMODL)model.In the presented SDMIRP-SMODL model,the feature subset selection process is performed by the SMO algorithm,which in turn minimizes the computation complexity.For rainfall prediction.Convolution neural network with long short-term memory(CNN-LSTM)technique is exploited.At last,this study involves the pelican optimization algorithm(POA)as a hyperparameter optimizer.The experimental evaluation of the SDMIRP-SMODL approach is tested utilizing a rainfall dataset comprising 23682 samples in the negative class and 1865 samples in the positive class.The comparative outcomes reported the supremacy of the SDMIRP-SMODL model compared to existing techniques.展开更多
In order to find an effective way to improve the quality of school management,finding valuable information from students' original data and providing feedback for student management are necessary. Firstly,some new...In order to find an effective way to improve the quality of school management,finding valuable information from students' original data and providing feedback for student management are necessary. Firstly,some new and successful educational data mining models were analyzed and compared. These models have better performance than traditional models( such as Knowledge Tracing Model) in efficiency,comprehensiveness,ease of use,stability and so on. Then,the neural network algorithm was conducted to explore the feasibility of the application of educational data mining in student management,and the results show that it has enough predictive accuracy and reliability to be put into practice. In the end,the possibility and prospect of the application of educational data mining in teaching management system for university students was assessed.展开更多
The intensity of environmental regulation (ERI) affects the short-term effect of the level of green mining (GML),and which structure determines the long-term mechanism.Based on the panel data from 2001 to 2015,with th...The intensity of environmental regulation (ERI) affects the short-term effect of the level of green mining (GML),and which structure determines the long-term mechanism.Based on the panel data from 2001 to 2015,with the dynamic panel model and system GMM estimation method were employed to test the influence of heterogeneous environmental regulation on green mining and its transmission mechanism.The results show that,there is a 'U' type nonlinear relationship between the ERI and GML.The direct effect of command-control-based (CAC) and the market incentive-based (MBI) environmental regulation on green development of mining shows the characteristics of inhibition and promotion.There is a 'U' type of indirectly moderating effect between technological innovation and the energy consumption structure on the GML.The technological innovation promotes the green development of the mining industry only after pass the inflection point of MBI,while the CAC plays a significant guiding role in upgrading of the energy consumption structure.There is an inhibition and promotion effect of MBI on the GML in the southeast coastal area,and the CAC is not significantly.Meanwhile,both of the ERI shows no positive effects in the central and western inland region.展开更多
The high temperature dielectrics of Quartz fiber-reinforced silicon dioxide ceramic (Si02/SiO2 ) composites were studied both theoretically and experimentally. A multi-scale theoretical model was developed based on ...The high temperature dielectrics of Quartz fiber-reinforced silicon dioxide ceramic (Si02/SiO2 ) composites were studied both theoretically and experimentally. A multi-scale theoretical model was developed based on the theory of dielectrics. It was realized to predict dielectric properties at higher temperature ( 〉 1200 ℃) by experimental data mining for correlative coefficients in model. The results show that the dielectrics of SiO2/SiO2, which were calculated with the theoretical model, were in agreement with experimental measured value.展开更多
Data Mining has become an important technique for the exploration and extraction of data in numerous and various research projects in different fields (technology, information technology, business, the environment, ec...Data Mining has become an important technique for the exploration and extraction of data in numerous and various research projects in different fields (technology, information technology, business, the environment, economics, etc.). In the context of the analysis and visualisation of large amounts of data extracted using Data Mining on a temporary basis (time-series), free software such as R has appeared in the international context as a perfect inexpensive and efficient tool of exploitation and visualisation of time series. This has allowed the development of models, which help to extract the most relevant information from large volumes of data. In this regard, a script has been developed with the goal of implementing ARIMA models, showing these as useful and quick mechanisms for the extraction, analysis and visualisation of large data volumes, in addition to presenting the great advantage of being applied in multiple branches of knowledge from economy, demography, physics, mathematics and fisheries among others. Therefore, ARIMA models appear as a Data Mining technique, offering reliable, robust and high-quality results, to help validate and sustain the research carried out.展开更多
Facing the development of future 5 G, the emerging technologies such as Internet of things, big data, cloud computing, and artificial intelligence is enhancing an explosive growth in data traffic. Radical changes in c...Facing the development of future 5 G, the emerging technologies such as Internet of things, big data, cloud computing, and artificial intelligence is enhancing an explosive growth in data traffic. Radical changes in communication theory and implement technologies, the wireless communications and wireless networks have entered a new era. Among them, wireless big data(WBD) has tremendous value, and artificial intelligence(AI) gives unthinkable possibilities. However, in the big data development and artificial intelligence application groups, the lack of a sound theoretical foundation and mathematical methods is regarded as a real challenge that needs to be solved. From the basic problem of wireless communication, the interrelationship of demand, environment and ability, this paper intends to investigate the concept and data model of WBD, the wireless data mining, the wireless knowledge and wireless knowledge learning(WKL), and typical practices examples, to facilitate and open up more opportunities of WBD research and developments. Such research is beneficial for creating new theoretical foundation and emerging technologies of future wireless communications.展开更多
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p...For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.展开更多
The veracity of land evaluation is tightly related to the reasonable weights of land evaluation fac- tors. By mapping qualitative linguistic words into a fine-changeable cloud drops and translating the uncertain facto...The veracity of land evaluation is tightly related to the reasonable weights of land evaluation fac- tors. By mapping qualitative linguistic words into a fine-changeable cloud drops and translating the uncertain factor conditions into quantitative values with the uncertain illation based on cloud model, and then, inte- grating correlation analysis, a new way of figuring out the weight of land evaluation factors is proposed. It may solve the limitations of the conventional ways.展开更多
Data mining in the educational field can be used to optimize the teaching and learning performance among the students.The recently developed machine learning(ML)and deep learning(DL)approaches can be utilized to mine ...Data mining in the educational field can be used to optimize the teaching and learning performance among the students.The recently developed machine learning(ML)and deep learning(DL)approaches can be utilized to mine the data effectively.This study proposes an Improved Sailfish Optimizer-based Feature SelectionwithOptimal Stacked Sparse Autoencoder(ISOFS-OSSAE)for data mining and pattern recognition in the educational sector.The proposed ISOFS-OSSAE model aims to mine the educational data and derive decisions based on the feature selection and classification process.Moreover,the ISOFS-OSSAEmodel involves the design of the ISOFS technique to choose an optimal subset of features.Moreover,the swallow swarm optimization(SSO)with the SSAE model is derived to perform the classification process.To showcase the enhanced outcomes of the ISOFSOSSAE model,a wide range of experiments were taken place on a benchmark dataset from the University of California Irvine(UCI)Machine Learning Repository.The simulation results pointed out the improved classification performance of the ISOFS-OSSAE model over the recent state of art approaches interms of different performance measures.展开更多
In the 21st century, the surge in natural and human-induced disasters necessitates robust disaster managementframeworks. This research addresses a critical gap, exploring dynamics in the successful implementation andp...In the 21st century, the surge in natural and human-induced disasters necessitates robust disaster managementframeworks. This research addresses a critical gap, exploring dynamics in the successful implementation andperformance monitoring of disaster management. Focusing on eleven key elements like Vulnerability and RiskAssessment, Training, Disaster Preparedness, Communication, and Community Resilience, the study utilizesScopus Database for secondary data, employing Text Mining and MS-Excel for analysis and data management.IBM SPSS (26) and IBM AMOS (20) facilitate Exploratory Factor Analysis (EFA) and Structural Equation Modeling(SEM) for model evaluation.The research raises questions about crafting a comprehensive, adaptable model, understanding the interplaybetween vulnerability assessment, training, and disaster preparedness, and integrating effective communicationand collaboration. Findings offer actionable insights for policy, practice, and community resilience against disasters. By scrutinizing each factor's role and interactions, the research lays the groundwork for a flexible model.Ultimately, the study aspires to cultivate more resilient communities amid the escalating threats of an unpredictable world, fostering effective navigation and thriving.展开更多
In the electron beam selective melting(EBSM)process,the quality of each deposited melt track has an effect on the properties of the manufactured component.However,the formation of the melt track is governed by various...In the electron beam selective melting(EBSM)process,the quality of each deposited melt track has an effect on the properties of the manufactured component.However,the formation of the melt track is governed by various physical phenomena and influenced by various process parameters,and the correlation of these parameters is complicated and difficult to establish experimentally.The mesoscopic modeling technique was recently introduced as a means of simulating the electron beam(EB)melting process and revealing the formation mechanisms of specific melt track morphologies.However,the correlation between the process parameters and the melt track features has not yet been quantitatively understood.This paper investigates the morphological features of the melt track from the results of mesoscopic simulation,while introducing key descriptive indexes such as melt track width and height in order to numerically assess the deposition quality.The effects of various processing parameters are also quantitatively investigated,and the correlation between the processing conditions and the melt track features is thereby derived.Finally,a simulation-driven optimization framework consisting of mesoscopic modeling and data mining is proposed,and its potential and limitations are discussed.展开更多
The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates ...The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates the vague and random use of linguistic terms in a unified way. With these models, spatial and nonspatial attribute values are well generalized at multiple levels, allowing discovery of strong spatial association rules. Combining the cloud model based method with Apriori algorithms for mining association rules from a spatial database shows benefits in being effective and flexible.展开更多
In conjunction with association rules for data mining, the connections between testing indices and strong and weak association rules were determined, and new derivative rules were obtained by further reasoning. Associ...In conjunction with association rules for data mining, the connections between testing indices and strong and weak association rules were determined, and new derivative rules were obtained by further reasoning. Association rules were used to analyze correlation and check consistency between indices. This study shows that the judgment obtained by weak association rules or non-association rules is more accurate and more credible than that obtained by strong association rules. When the testing grades of two indices in the weak association rules are inconsistent, the testing grades of indices are more likely to be erroneous, and the mistakes are often caused by human factors. Clustering data mining technology was used to analyze the reliability of a diagnosis, or to perform health diagnosis directly. Analysis showed that the clustering results are related to the indices selected, and that if the indices selected are more significant, the characteristics of clustering results are also more significant, and the analysis or diagnosis is more credible. The indices and diagnosis analysis function produced by this study provide a necessary theoretical foundation and new ideas for the development of hydraulic metal structure health diagnosis technology.展开更多
With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this pap...With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods.展开更多
By analyzing the WWW Cache model, we bring forward a user-interest description method based on the fuzzy theory and user-interest inferential relations based on BP(baek propagation) neural network. By this method, t...By analyzing the WWW Cache model, we bring forward a user-interest description method based on the fuzzy theory and user-interest inferential relations based on BP(baek propagation) neural network. By this method, the users' interest in the WWW cache can be described and the neural network of users' interest can be constructed by positive spread of interest and the negative spread of errors. This neural network can infer the users' interest. This model is not the simple extension of the simple interest model, but the round improvement of the model and its related algorithm.展开更多
In this paper, the high-level knowledge of financial data modeled by ordinary differential equations (ODEs) is discovered in dynamic data by using an asynchronous parallel evolutionary modeling algorithm (APHEMA). A n...In this paper, the high-level knowledge of financial data modeled by ordinary differential equations (ODEs) is discovered in dynamic data by using an asynchronous parallel evolutionary modeling algorithm (APHEMA). A numerical example of Nasdaq index analysis is used to demonstrate the potential of APHEMA. The results show that the dynamic models automatically discovered in dynamic data by computer can be used to predict the financial trends.展开更多
基金This research was partly supported by the Technology Development Program of MSS[No.S3033853]by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A4A1031509).
文摘Statistics are most crucial than ever due to the accessibility of huge counts of data from several domains such as finance,medicine,science,engineering,and so on.Statistical data mining(SDM)is an interdisciplinary domain that examines huge existing databases to discover patterns and connections from the data.It varies in classical statistics on the size of datasets and on the detail that the data could not primarily be gathered based on some experimental strategy but conversely for other resolves.Thus,this paper introduces an effective statistical Data Mining for Intelligent Rainfall Prediction using Slime Mould Optimization with Deep Learning(SDMIRPSMODL)model.In the presented SDMIRP-SMODL model,the feature subset selection process is performed by the SMO algorithm,which in turn minimizes the computation complexity.For rainfall prediction.Convolution neural network with long short-term memory(CNN-LSTM)technique is exploited.At last,this study involves the pelican optimization algorithm(POA)as a hyperparameter optimizer.The experimental evaluation of the SDMIRP-SMODL approach is tested utilizing a rainfall dataset comprising 23682 samples in the negative class and 1865 samples in the positive class.The comparative outcomes reported the supremacy of the SDMIRP-SMODL model compared to existing techniques.
基金Sponsored by the Ability Enhancement Project of Teaching Staff in Harbin Institute of Technology(Grant No.06)
文摘In order to find an effective way to improve the quality of school management,finding valuable information from students' original data and providing feedback for student management are necessary. Firstly,some new and successful educational data mining models were analyzed and compared. These models have better performance than traditional models( such as Knowledge Tracing Model) in efficiency,comprehensiveness,ease of use,stability and so on. Then,the neural network algorithm was conducted to explore the feasibility of the application of educational data mining in student management,and the results show that it has enough predictive accuracy and reliability to be put into practice. In the end,the possibility and prospect of the application of educational data mining in teaching management system for university students was assessed.
文摘The intensity of environmental regulation (ERI) affects the short-term effect of the level of green mining (GML),and which structure determines the long-term mechanism.Based on the panel data from 2001 to 2015,with the dynamic panel model and system GMM estimation method were employed to test the influence of heterogeneous environmental regulation on green mining and its transmission mechanism.The results show that,there is a 'U' type nonlinear relationship between the ERI and GML.The direct effect of command-control-based (CAC) and the market incentive-based (MBI) environmental regulation on green development of mining shows the characteristics of inhibition and promotion.There is a 'U' type of indirectly moderating effect between technological innovation and the energy consumption structure on the GML.The technological innovation promotes the green development of the mining industry only after pass the inflection point of MBI,while the CAC plays a significant guiding role in upgrading of the energy consumption structure.There is an inhibition and promotion effect of MBI on the GML in the southeast coastal area,and the CAC is not significantly.Meanwhile,both of the ERI shows no positive effects in the central and western inland region.
基金the National Defense 973 (Grant No.513180303) and National Defense Basic Scientific Research (Grant No. A2220061080)the Na-tional Defense Foundation (Grant No. 5142040205BQ0154).
文摘The high temperature dielectrics of Quartz fiber-reinforced silicon dioxide ceramic (Si02/SiO2 ) composites were studied both theoretically and experimentally. A multi-scale theoretical model was developed based on the theory of dielectrics. It was realized to predict dielectric properties at higher temperature ( 〉 1200 ℃) by experimental data mining for correlative coefficients in model. The results show that the dielectrics of SiO2/SiO2, which were calculated with the theoretical model, were in agreement with experimental measured value.
文摘Data Mining has become an important technique for the exploration and extraction of data in numerous and various research projects in different fields (technology, information technology, business, the environment, economics, etc.). In the context of the analysis and visualisation of large amounts of data extracted using Data Mining on a temporary basis (time-series), free software such as R has appeared in the international context as a perfect inexpensive and efficient tool of exploitation and visualisation of time series. This has allowed the development of models, which help to extract the most relevant information from large volumes of data. In this regard, a script has been developed with the goal of implementing ARIMA models, showing these as useful and quick mechanisms for the extraction, analysis and visualisation of large data volumes, in addition to presenting the great advantage of being applied in multiple branches of knowledge from economy, demography, physics, mathematics and fisheries among others. Therefore, ARIMA models appear as a Data Mining technique, offering reliable, robust and high-quality results, to help validate and sustain the research carried out.
文摘Facing the development of future 5 G, the emerging technologies such as Internet of things, big data, cloud computing, and artificial intelligence is enhancing an explosive growth in data traffic. Radical changes in communication theory and implement technologies, the wireless communications and wireless networks have entered a new era. Among them, wireless big data(WBD) has tremendous value, and artificial intelligence(AI) gives unthinkable possibilities. However, in the big data development and artificial intelligence application groups, the lack of a sound theoretical foundation and mathematical methods is regarded as a real challenge that needs to be solved. From the basic problem of wireless communication, the interrelationship of demand, environment and ability, this paper intends to investigate the concept and data model of WBD, the wireless data mining, the wireless knowledge and wireless knowledge learning(WKL), and typical practices examples, to facilitate and open up more opportunities of WBD research and developments. Such research is beneficial for creating new theoretical foundation and emerging technologies of future wireless communications.
基金supported by the National Natural Science Foundation of China(61371172)the International S&T Cooperation Program of China(2015DFR10220)+1 种基金the Ocean Engineering Project of National Key Laboratory Foundation(1213)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.
文摘The veracity of land evaluation is tightly related to the reasonable weights of land evaluation fac- tors. By mapping qualitative linguistic words into a fine-changeable cloud drops and translating the uncertain factor conditions into quantitative values with the uncertain illation based on cloud model, and then, inte- grating correlation analysis, a new way of figuring out the weight of land evaluation factors is proposed. It may solve the limitations of the conventional ways.
文摘Data mining in the educational field can be used to optimize the teaching and learning performance among the students.The recently developed machine learning(ML)and deep learning(DL)approaches can be utilized to mine the data effectively.This study proposes an Improved Sailfish Optimizer-based Feature SelectionwithOptimal Stacked Sparse Autoencoder(ISOFS-OSSAE)for data mining and pattern recognition in the educational sector.The proposed ISOFS-OSSAE model aims to mine the educational data and derive decisions based on the feature selection and classification process.Moreover,the ISOFS-OSSAEmodel involves the design of the ISOFS technique to choose an optimal subset of features.Moreover,the swallow swarm optimization(SSO)with the SSAE model is derived to perform the classification process.To showcase the enhanced outcomes of the ISOFSOSSAE model,a wide range of experiments were taken place on a benchmark dataset from the University of California Irvine(UCI)Machine Learning Repository.The simulation results pointed out the improved classification performance of the ISOFS-OSSAE model over the recent state of art approaches interms of different performance measures.
文摘In the 21st century, the surge in natural and human-induced disasters necessitates robust disaster managementframeworks. This research addresses a critical gap, exploring dynamics in the successful implementation andperformance monitoring of disaster management. Focusing on eleven key elements like Vulnerability and RiskAssessment, Training, Disaster Preparedness, Communication, and Community Resilience, the study utilizesScopus Database for secondary data, employing Text Mining and MS-Excel for analysis and data management.IBM SPSS (26) and IBM AMOS (20) facilitate Exploratory Factor Analysis (EFA) and Structural Equation Modeling(SEM) for model evaluation.The research raises questions about crafting a comprehensive, adaptable model, understanding the interplaybetween vulnerability assessment, training, and disaster preparedness, and integrating effective communicationand collaboration. Findings offer actionable insights for policy, practice, and community resilience against disasters. By scrutinizing each factor's role and interactions, the research lays the groundwork for a flexible model.Ultimately, the study aspires to cultivate more resilient communities amid the escalating threats of an unpredictable world, fostering effective navigation and thriving.
文摘In the electron beam selective melting(EBSM)process,the quality of each deposited melt track has an effect on the properties of the manufactured component.However,the formation of the melt track is governed by various physical phenomena and influenced by various process parameters,and the correlation of these parameters is complicated and difficult to establish experimentally.The mesoscopic modeling technique was recently introduced as a means of simulating the electron beam(EB)melting process and revealing the formation mechanisms of specific melt track morphologies.However,the correlation between the process parameters and the melt track features has not yet been quantitatively understood.This paper investigates the morphological features of the melt track from the results of mesoscopic simulation,while introducing key descriptive indexes such as melt track width and height in order to numerically assess the deposition quality.The effects of various processing parameters are also quantitatively investigated,and the correlation between the processing conditions and the melt track features is thereby derived.Finally,a simulation-driven optimization framework consisting of mesoscopic modeling and data mining is proposed,and its potential and limitations are discussed.
文摘The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates the vague and random use of linguistic terms in a unified way. With these models, spatial and nonspatial attribute values are well generalized at multiple levels, allowing discovery of strong spatial association rules. Combining the cloud model based method with Apriori algorithms for mining association rules from a spatial database shows benefits in being effective and flexible.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.50539010)the Special Fund for Public Welfare Industry of the Ministry of Water Resources of China(Grant No.200801019)
文摘In conjunction with association rules for data mining, the connections between testing indices and strong and weak association rules were determined, and new derivative rules were obtained by further reasoning. Association rules were used to analyze correlation and check consistency between indices. This study shows that the judgment obtained by weak association rules or non-association rules is more accurate and more credible than that obtained by strong association rules. When the testing grades of two indices in the weak association rules are inconsistent, the testing grades of indices are more likely to be erroneous, and the mistakes are often caused by human factors. Clustering data mining technology was used to analyze the reliability of a diagnosis, or to perform health diagnosis directly. Analysis showed that the clustering results are related to the indices selected, and that if the indices selected are more significant, the characteristics of clustering results are also more significant, and the analysis or diagnosis is more credible. The indices and diagnosis analysis function produced by this study provide a necessary theoretical foundation and new ideas for the development of hydraulic metal structure health diagnosis technology.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2013RC0114111 Project of China under Grant No.B08004
文摘With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods.
基金Supported bythe Outstanding Young Young Scientist’s Fund ofthe National Natural Science Foundation of China (60303024) ,the National Natu-ral Science Foundation of China (90412003) , National Grand Fundamental Re-search 973 Programof China (2002CB312000) , Doctor Foundation of Ministry ofEducation(20020286004) , Opening Foundation of Jiangsu Key Laboratory of Com-puter Information Processing Technology in Soochow University, Natural ScienceResearch Planfor Jiang Su High School(04kjb520096) ,Doctor Foundatoin of Nan-jing University of Posts and Telecommunications(2003-02)
文摘By analyzing the WWW Cache model, we bring forward a user-interest description method based on the fuzzy theory and user-interest inferential relations based on BP(baek propagation) neural network. By this method, the users' interest in the WWW cache can be described and the neural network of users' interest can be constructed by positive spread of interest and the negative spread of errors. This neural network can infer the users' interest. This model is not the simple extension of the simple interest model, but the round improvement of the model and its related algorithm.
文摘In this paper, the high-level knowledge of financial data modeled by ordinary differential equations (ODEs) is discovered in dynamic data by using an asynchronous parallel evolutionary modeling algorithm (APHEMA). A numerical example of Nasdaq index analysis is used to demonstrate the potential of APHEMA. The results show that the dynamic models automatically discovered in dynamic data by computer can be used to predict the financial trends.