Diabetes mellitus(DM)is one of the major causes of mortality worldwide,with inflammation being an important factor in its onset and development.This review summarizes the specific mechanisms of the cyclic guanosine mo...Diabetes mellitus(DM)is one of the major causes of mortality worldwide,with inflammation being an important factor in its onset and development.This review summarizes the specific mechanisms of the cyclic guanosine monophosphate-adenosine monophosphate synthase(cGAS)-stimulator of interferon genes(STING)pathway in mediating inflammatory responses.Furthermore,it compre-hensively presents related research progress and the subsequent involvement of this pathway in the pathogenesis of early-stage DM,diabetic gastroenteropathy,diabetic cardiomyopathy,non-alcoholic fatty liver disease,and other complic-ations.Additionally,the role of cGAS-STING in autonomic dysfunction and intes-tinal dysregulation,which can lead to digestive complications,has been discuss-ed.Altogether,this study provides a comprehensive analysis of the research advances regarding the cGAS-STING pathway-targeted therapeutic agents and the prospects for their application in the precision treatment of DM.展开更多
Objective: To study the morphologic abnormalities of the myenteric plexus in diabetic rats and to explore the mechanism of their effect on gastrointestinal motility. Methods: Forty rats were randomly divided into a ...Objective: To study the morphologic abnormalities of the myenteric plexus in diabetic rats and to explore the mechanism of their effect on gastrointestinal motility. Methods: Forty rats were randomly divided into a diabetic group and a control group, Gastric emptying and small intestine transit rates were measured and histologic and molecular changes in glutamatergic nerves in the ileal myenteric plexus were observed, mGluR5 receptor and EAAC1 transporter changes in the diabetic rats were studied using fluorescence immunohistochemistry and RT-PCR. Results:Eighteen weeks after the establishment of the diabetic rats model, gastric emptying and small intestine transit rates were found to be significantly delayed in the diabetic group when compared with the control group. The density of glutamatergic ganglia and neurons in the ileal myenterie plexus were significantly decreased in the diabetic group when compared with control group(P 〈 0.05) and the mGluR5 receptors and EAAC1 transporters were downregulated in the diabetic rats(P 〈 0.05). Conclusion: Decreased glutamatergic enteric ganglia and neurons and decreased mGluR5 receptors and EAAC1 transporters in the intestinal myenteric plexus is one of the mechanisms of diabetic gastroenteropathy in rats.展开更多
基金Supported by the Natural Science Foundation of Shandong Province,No.ZR2022MH153“Clinical+X”Project Fund of Binzhou Medical College,No.BY2021LCX11.
文摘Diabetes mellitus(DM)is one of the major causes of mortality worldwide,with inflammation being an important factor in its onset and development.This review summarizes the specific mechanisms of the cyclic guanosine monophosphate-adenosine monophosphate synthase(cGAS)-stimulator of interferon genes(STING)pathway in mediating inflammatory responses.Furthermore,it compre-hensively presents related research progress and the subsequent involvement of this pathway in the pathogenesis of early-stage DM,diabetic gastroenteropathy,diabetic cardiomyopathy,non-alcoholic fatty liver disease,and other complic-ations.Additionally,the role of cGAS-STING in autonomic dysfunction and intes-tinal dysregulation,which can lead to digestive complications,has been discuss-ed.Altogether,this study provides a comprehensive analysis of the research advances regarding the cGAS-STING pathway-targeted therapeutic agents and the prospects for their application in the precision treatment of DM.
文摘Objective: To study the morphologic abnormalities of the myenteric plexus in diabetic rats and to explore the mechanism of their effect on gastrointestinal motility. Methods: Forty rats were randomly divided into a diabetic group and a control group, Gastric emptying and small intestine transit rates were measured and histologic and molecular changes in glutamatergic nerves in the ileal myenteric plexus were observed, mGluR5 receptor and EAAC1 transporter changes in the diabetic rats were studied using fluorescence immunohistochemistry and RT-PCR. Results:Eighteen weeks after the establishment of the diabetic rats model, gastric emptying and small intestine transit rates were found to be significantly delayed in the diabetic group when compared with the control group. The density of glutamatergic ganglia and neurons in the ileal myenterie plexus were significantly decreased in the diabetic group when compared with control group(P 〈 0.05) and the mGluR5 receptors and EAAC1 transporters were downregulated in the diabetic rats(P 〈 0.05). Conclusion: Decreased glutamatergic enteric ganglia and neurons and decreased mGluR5 receptors and EAAC1 transporters in the intestinal myenteric plexus is one of the mechanisms of diabetic gastroenteropathy in rats.