通过优化地铁时刻表可有效降低地铁牵引能耗。为解决客流波动和车辆延误对实际节能率影响的问题,提出列车牵引和供电系统实时潮流计算分析模型和基于Dueling Deep Q Network(Dueling DQN)深度强化学习算法相结合的运行图节能优化方法,...通过优化地铁时刻表可有效降低地铁牵引能耗。为解决客流波动和车辆延误对实际节能率影响的问题,提出列车牵引和供电系统实时潮流计算分析模型和基于Dueling Deep Q Network(Dueling DQN)深度强化学习算法相结合的运行图节能优化方法,建立基于区间动态客流概率统计的时刻表迭代优化模型,降低动态客流变化对节能率的影响。对预测Q网络和目标Q网络分别选取自适应时刻估计和均方根反向传播方法,提高模型收敛快速性,同时以时刻表优化前、后总运行时间不变、乘客换乘时间和等待时间最小为优化目标,实现节能时刻表无感切换。以苏州轨道交通4号线为例验证方法的有效性,节能对比试验结果表明:在到达换乘站时刻偏差不超过2 s和列车全周转运行时间不变的前提下,列车牵引节能率达5.27%,车公里能耗下降4.99%。展开更多
With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms ...With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms of spatial crowd-sensing,it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to construct intelligent traffic prediction models.Besides collecting sensing data,spatial crowdsourcing also includes spatial delivery services like DiDi and Uber.Appropriate task assignment and worker selection dominate the service quality for spatial crowdsourcing applications.Previous research conducted task assignments via traditional matching approaches or using simple network models.However,advanced mining methods are lacking to explore the relationship between workers,task publishers,and the spatio-temporal attributes in tasks.Therefore,in this paper,we propose a Deep Double Dueling Spatial-temporal Q Network(D3SQN)to adaptively learn the spatialtemporal relationship between task,task publishers,and workers in a dynamic environment to achieve optimal allocation.Specifically,D3SQNis revised through reinforcement learning by adding a spatial-temporal transformer that can estimate the expected state values and action advantages so as to improve the accuracy of task assignments.Extensive experiments are conducted over real data collected fromDiDi and ELM,and the simulation results verify the effectiveness of our proposed models.展开更多
针对自动化立体仓库出库作业过程中剩余货物退库问题,以堆垛机作业总能耗最小化为目标,以退库货位分配为决策变量,建立了自动化立体仓库退库货位优化模型,提出了基于深度强化学习的自动化立体仓库退库货位优化框架。在该框架内,以立体...针对自动化立体仓库出库作业过程中剩余货物退库问题,以堆垛机作业总能耗最小化为目标,以退库货位分配为决策变量,建立了自动化立体仓库退库货位优化模型,提出了基于深度强化学习的自动化立体仓库退库货位优化框架。在该框架内,以立体仓库实时存储信息和出库作业信息构建多维状态,以退库货位选择构建动作,建立自动化立体仓库退库货位优化的马尔科夫决策过程模型;将立体仓库多维状态特征输入双层决斗网络,采用决斗双重深度Q网络(dueling double deep Q-network,D3QN)算法训练网络模型并预测退库动作目标价值,以确定智能体的最优行为策略。实验结果表明D3QN算法在求解大规模退库货位优化问题上具有较好的稳定性。展开更多
基金supported in part by the Pioneer and Leading Goose R&D Program of Zhejiang Province under Grant 2022C01083 (Dr.Yu Li,https://zjnsf.kjt.zj.gov.cn/)Pioneer and Leading Goose R&D Program of Zhejiang Province under Grant 2023C01217 (Dr.Yu Li,https://zjnsf.kjt.zj.gov.cn/).
文摘With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms of spatial crowd-sensing,it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to construct intelligent traffic prediction models.Besides collecting sensing data,spatial crowdsourcing also includes spatial delivery services like DiDi and Uber.Appropriate task assignment and worker selection dominate the service quality for spatial crowdsourcing applications.Previous research conducted task assignments via traditional matching approaches or using simple network models.However,advanced mining methods are lacking to explore the relationship between workers,task publishers,and the spatio-temporal attributes in tasks.Therefore,in this paper,we propose a Deep Double Dueling Spatial-temporal Q Network(D3SQN)to adaptively learn the spatialtemporal relationship between task,task publishers,and workers in a dynamic environment to achieve optimal allocation.Specifically,D3SQNis revised through reinforcement learning by adding a spatial-temporal transformer that can estimate the expected state values and action advantages so as to improve the accuracy of task assignments.Extensive experiments are conducted over real data collected fromDiDi and ELM,and the simulation results verify the effectiveness of our proposed models.
文摘针对自动化立体仓库出库作业过程中剩余货物退库问题,以堆垛机作业总能耗最小化为目标,以退库货位分配为决策变量,建立了自动化立体仓库退库货位优化模型,提出了基于深度强化学习的自动化立体仓库退库货位优化框架。在该框架内,以立体仓库实时存储信息和出库作业信息构建多维状态,以退库货位选择构建动作,建立自动化立体仓库退库货位优化的马尔科夫决策过程模型;将立体仓库多维状态特征输入双层决斗网络,采用决斗双重深度Q网络(dueling double deep Q-network,D3QN)算法训练网络模型并预测退库动作目标价值,以确定智能体的最优行为策略。实验结果表明D3QN算法在求解大规模退库货位优化问题上具有较好的稳定性。