The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured...The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions.展开更多
This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load fram...This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency.展开更多
The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure ...The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure behavior under impact loading,intact granite specimens and specimens with different flaw inclinations are tested by a modified split Hopkinson pressure bar(SHPB)and digital image correlation(DIC)method.The results show that peak strain and dynamic strength of intact specimens and specimens with different flaw angles(α)decrease with the increase of axial static pressure.The 90°flaw has weak reduction effect on peak strain,dynamic strength and combined strength,while 45°and 0°flaws have remarkable reduction effect.Specimens with 90°flaw are suffered combined shear and tensile failure under middle and low axial static pre-stresses,and suffered shear failure under high axial static pre-stresses.Specimens with 45°and 0°flaws are suffered oblique shear failure caused by pre-existing flaw under different axial static pre-stresses.Besides,based on digital image correlation method,it is found that micro-cracks before formation of macro fractures(include shear and tensile fractures)belong to tensile cracks.Tensile and shear strain localizations at pre-existing flaw tip for specimen with 45°and 0°flaws are produced much earlier than that at other positions.展开更多
Development and expansion of cities in one hand and increasing transport needs on the other hand have been causing underground constructions. So understanding the behavior of these structures is essential. Ground disp...Development and expansion of cities in one hand and increasing transport needs on the other hand have been causing underground constructions. So understanding the behavior of these structures is essential. Ground displacement around the tunneling area is one of the most important issues which have been studied by many researchers, while the effects of the slope behavior of the ground on the tunnel is paid less attention. This study will have analyzed the effects of frequency and surface slope on the surface subsidence caused by tunneling under dynamic loads (without structure). The results show that the frequency and surface slope have significant effects on the land displacements and the area surrounded by a tunnel.展开更多
The mathematical model of dynamic loads was developed based on an analysis of the polished rod load of beam pumps, and the variation of the dynamic loads and the computation of the minimum and maximum limits during a ...The mathematical model of dynamic loads was developed based on an analysis of the polished rod load of beam pumps, and the variation of the dynamic loads and the computation of the minimum and maximum limits during a complete pumping cycle were given out by solving the model.Field examples verify that it is necessary to take into account the inertial and vibration loads while calculating polished rod loads.During the prophase of the pumping production, the dynamic to polished rod load ratio is relatively large.Then the ratio decreases rapidly and becomes small after entering stable production.Moreover, the total deformation of rod and tubing in CBM wells is much smaller than that in oil fields, and the deformation caused by the dynamic loads is also relatively small.The result of this work is the calculation of the dynamic loads.The application of this calculation for the sucker rod pumping system in CBM wells can give the desired accuracy of polished rod load and the dynamometer cards, which provides a reasonable basis for the design and selection of beam pumps.展开更多
According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response mo...According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio.展开更多
The vibration disturbance from an external environment affects the machining accuracy of ultra-precision machining equipment.Most active vibration-isolation systems(AVIS)have been developed based on static loads.When ...The vibration disturbance from an external environment affects the machining accuracy of ultra-precision machining equipment.Most active vibration-isolation systems(AVIS)have been developed based on static loads.When a vibration-isolation load changes dynamically during ultra-precision turning lathe machining,the system parameters change,and the efficiency of the active vibration-isolation system based on the traditional control strategy deteriorates.To solve this problem,this paper proposes a vibration-isolation control strategy based on a genetic algorithm-back propagation neural network-PID control(GA-BP-PID),which can automatically adjust the control parameters according to the machining conditions.Vibration-isolation simulations and experiments based on passive vibration isolation,a PID algorithm,and the GA-BP-PID algorithm under dynamic load machining conditions were conducted.The experimental results demonstrated that the active vibration-isolation control strategy designed in this study could effectively attenuate vibration disturbances in the external environment under dynamic load conditions.This design is reasonable and feasible.展开更多
For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of ...For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of dynamic loading orientation on the stability of the twin-tunnel,a split Hopkinson pressure bar(SHPB)apparatus was used to conduct a dynamic test on the twin-tunnel specimens.The two tunnels were rotated around the specimen’s center to consider the effect of dynamic loading orientation.LS-DYNA software was used for numerical simulation to reveal the failure properties and stress wave propagation law of the twin-tunnel specimens.The findings indicate that,for a twin-tunnel exposed to a dynamic load from different orientations,the crack initiation position appears most often at the tunnel corner,tunnel spandrel,and tunnel floor.As the impact direction is created by a certain angle(30°,45°,60°,120°,135°,and 150°),the fractures are produced in the middle of the line between the left tunnel corner and the right tunnel spandrel.As the impact loading angle(a)is 90°,the tunnel sustains minimal damage,and only tensile fractures form in the surrounding rocks.The orientation of the impact load could change the stress distribution in the twin-tunnel,and major fractures are more likely to form in areas where the tensile stress is concentrated.展开更多
To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain ...To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth.展开更多
Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical a...Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.展开更多
The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measuremen...The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input.展开更多
By means of the improved split Hopkionson pressure bar(SHPB) with axial pre-pressure and confined pressure, two series of experiments on sandstone are carried out to research the failure mode of rock during the course...By means of the improved split Hopkionson pressure bar(SHPB) with axial pre-pressure and confined pressure, two series of experiments on sandstone are carried out to research the failure mode of rock during the course of exploitation of resources in deep. One is under the conditions that the con-fining pressure is fixed and the axial pressure is changeable. The other is under the conditions that the confining pressure becomes and the axial pressure is fixed. It is found that samples break up evenly after impacting when axial static pressures are low, there is great disparity in size of fragments when axial static pressures are high, and the main bodies of samples after the tests under the combination of dy-namic and static loads frequently show the type of V or X. The samples are more close-grained at the elastic stage and impacts make many cracks be generated and developed, as makes samples more crackable. At the initial phase of damage stage, the static pressures make some cracks in the samples which are undeveloped and the impacts′ role is similar to that at the elastic stage. At the metaphase or anaphase of damage stage, these cracks in the samples develop adequately and the impacts mainly accelerate samples′ failure. The main bodies of samples show the type of V or X after impacting due to the confining pressures′ restraining samples′ lateral formation at the elastic stage or the initial phase of damage stage, the main bodies of samples have almost formed at the stage loading static pressures and the results after impacting usually are similar to those under the axial pressures tests.展开更多
This paper puts forward a new rock fragmentation loading method of dual-cutter head combined dynamic and static loads. By applying the numerical simulation software - RFPA2D, we have done numerical experiment about th...This paper puts forward a new rock fragmentation loading method of dual-cutter head combined dynamic and static loads. By applying the numerical simulation software - RFPA2D, we have done numerical experiment about the sihstone' s crushing effect by dynamic load on single cutter head without confining pressure, dynamic load on single cut- ter head with confining pressure 10 MPa and different dual-cutter heads spacing by combined dynamic and static loads with confining pressure 10 MPa. Experimental results show that the confining pressure can obviously affect the rock frag- mentation effect. Combined dynamic and static loads can greatly improve the rock fragmentation effect. There exists an optimal spacing of dual-cutter head that can make the rock fragmentation achieve the desired effect. Through analyzing the acoustic emission accumulative energy and quantity, the authors make a conclusion that the optimum spacing is 30 mm.展开更多
The retained coal in the end slope of an open-pit mine can be mined by the highwall mining techniques.However,the instability mechanism of the reserved rib pillar under dynamic loads of mining haul trucks and static l...The retained coal in the end slope of an open-pit mine can be mined by the highwall mining techniques.However,the instability mechanism of the reserved rib pillar under dynamic loads of mining haul trucks and static loads of the overlying strata is not clear,which restricts the safe and efcient application of highwall mining.In this study,the load-bearing model of the rib pillar in highwall mining was established,the cusp catastrophe theory and the safety coefcient of the rib pillar were considered,and the criterion equations of the rib pillar stability were proposed.Based on the limit equilibrium theory,the limit stress of the rib pillar was analyzed,and the calculation equations of plastic zone width of the rib pillar in highwall mining were obtained.Based on the Winkler foundation beam theory,the elastic foundation beam model composed of the rib pillar and roof under the highwall mining was established,and the calculation equations for the compression of the rib pillar under dynamic and static loads were developed.The results showed that with the increase of the rib pillar width,the total compression of the rib pillar under dynamic and static loads decreases nonlinearly,and the compression of the rib pillar caused by static loads of the overlying strata and trucks has a decisive role.Numerical simulation and theoretical calculation were also performed in this study.In the numerical simulation,the coal seam with a buried depth of 122 m and a thickness of 3 m is mined by highwall mining techniques.According to the established rib pillar instability model of the highwall mining system,it is found that when the mining opening width is 3 m,the reasonable width of the rib pillar is at least 1.3 m,and the safety factor of the rib pillar is 1.3.The numerical simulation results are in good agreement with the results of theoretical calculation,which verifes the feasibility of the theoretical analysis of the rib pillar stability.This research provides a reference for the stability analysis of rib pillars under highwall mining.展开更多
Thin-walled tubes are increasingly used in automobile industries to improve structural safety.The present work deals with the collapse behavior of double-cell conical tubes subjected to dynamic axial and oblique loads...Thin-walled tubes are increasingly used in automobile industries to improve structural safety.The present work deals with the collapse behavior of double-cell conical tubes subjected to dynamic axial and oblique loads.Crashworthiness of these tubes having different sections(e.g.,circular,square,hexagonal,octagonal,decagonal)was numerically investigated by using an experimentally validated finite element model generated in LS-DYNA.Geometry of these tubes was then optimized by decreasing the cross section dimensions at the distal end while the weight remained unchanged.Octagonal conical tube was finally found to be more preferable to the others as a collision energy absorber.In addition,square and circular tubes showed diamond deformation mode,while the other tubes collapsed in concertina mode.A decision making method called TOPSIS was finally implemented on the numerical results to select the most efficient energy absorber.展开更多
Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the...Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the key factors that induce coal and gas outbursts.In this study,first,the coupling relationship between the gas pressure in the coal body ahead of the working face and the dynamic load was investigated using experimental observations,numerical simulations,and mine-site investigations.It was observed that the impact rate of the dynamic load on the gas-bearing coal can significantly change the gas pressure.The faster the impact rate,the speedier the increase in gas pressure.Moreover,the gas pressure rise was faster closer to the impact interface.Subsequently,based on engineering background,we proposed three models of stress and gas pressure distribution in the coal body ahead of the working face:static load,stress disturbance,and dynamic load conditions.Finally,the gas pressure distribution and outburst mechanism were investigated.The high concentration of gas pressure appearing at the coal body ahead of the working face was caused by the dynamic load.The gas pressure first increased gradually to a peak value and then decreased with increasing distance from the working face.The increase in gas pressure plays a major role in outburst initiation by resulting in the ability to more easily reach the critical points needed for outburst initiation.Moreover,the stronger the dynamic load,the greater the outburst initiation risk.The results of this study provide practical guidance for the early warning and prevention of coal and gas outbursts.展开更多
The nonlinear analysis with an analytical approach on dynamic torsional buckling of stiffened functionally graded thin toroidal shell segments is investigated. The shell is reinforced by inside stiffeners and surround...The nonlinear analysis with an analytical approach on dynamic torsional buckling of stiffened functionally graded thin toroidal shell segments is investigated. The shell is reinforced by inside stiffeners and surrounded by elastic foundations in a thermal environment and under a time-dependent torsional load. The governing equations are derived based on the Donnell shell theory with the yon Karman geometrical nonlinearity, the Stein and McElman assumption, the smeared stiffeners technique, and the Galerkin method. A deflection function with three terms is chosen. The thermal parameters of the uniform temperature rise and nonlinear temperature conduction law are found in an explicit form. A closed-form expression for determining the static critical torsional load is obtained. A critical dynamic torsional load is found by the fourth-order Runge-Kutta method and the Budiansky-Roth criterion. The effects of stiffeners, foundations, material, and dimensional parameters on dynamic responses of shells are considered.展开更多
The study of high-energy and low-vulnerability propellants is important for the power performance and safety of solid propellant rocket motors.The modified split Hopkinson pressure bar(SHPB)tests are performed on two ...The study of high-energy and low-vulnerability propellants is important for the power performance and safety of solid propellant rocket motors.The modified split Hopkinson pressure bar(SHPB)tests are performed on two kinds of propellant with different crosslinking density to study the dynamic mechanical responses and damage-ignition mechanism.SHPB apparatus is equipped with a highperformance infrared camera and high-speed camera to capture the deformation,damage-ignition feature and temperature evolution images in the impact process.The results suggested that the mechanical responses and damage-ignition mechanism of the propellants were affected by the strain rates and crosslinking density.The damage-ignition degree is more intense and the reaction occurs earlier with the increase of strain rates.For propellant 1 with higher crosslinking density,the critical ignition strain rate is 4500 s^(-1).Two kinds of propellants show different ignition mechanism,i.e.crack generation,propagation and final fracture for propellant 1 while viscous shear flow for propellant 2.Meanwhile,the SEM images also reveal the difference of damage-ignition mechanism of the two kinds of propellants.Finally,the ignition mechanism under different strain rates and critical ignition strain rate of propellants are further explained by the theoretical calculation of temperature variations.展开更多
It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution o...It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution of backfilled stopes is critical to maintain the long-term stope stability and ensure safe mining activities. This paper aims to study the damage evolution of the backfill material and its host rock behaviour under three-dimensional(3D) dynamic loading. Using a true-triaxial testing machine, multiple samples of backfill material enclosed by country rock were fabricated and tested under various dynamic loadings with different true-triaxial confining stress conditions. In addition, the nuclear magnetic resonance(NMR) measurement was conducted on the samples before and after exerting static and dynamic loading to obtain their porosity distribution changes. The experiment results suggested that with the increase of the dynamic loading, the porosity of the backfill sample goes through a two-stage process,which shows a slightly linear decrease and then followed by an exponential increase. The research findings can help understand the damage mechanism and fracture development of backfilled stopes and its host rock in deep underground mines, which are constantly subject to the combination of 3D static confining stress and dynamic loading.展开更多
The damage properties of two types of rocks under dynamic loading are studied. The shock induced experiments are done using planar impact technique on the one? stage light gas gun, and the ultrasonic tests on the da...The damage properties of two types of rocks under dynamic loading are studied. The shock induced experiments are done using planar impact technique on the one? stage light gas gun, and the ultrasonic tests on the damaged rocks have been made by use of the ultrasonic pulse? transmission method. The shock induced damage of rock is related to the shock speed and the attenuation coefficient of sonic wave, and the latter reflects the damage degree in rock fairly well. The attenuation coefficient α can be used as main damage parameter for constructing damage model of rock under dynamic loading.展开更多
基金the financial support from the National Natural Science Foundation of China(Nos.52374094,52174122 and 52374218)Excellent Youth Fund of Shandong Natural Science Foundation(No.ZR2022YQ49)Taishan Scholar Project in Shandong Province(Nos.tspd20210313 and tsqn202211150)。
文摘The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions.
基金supported by the National Natural Science Foundation of China(Nos.52074151,51927807,and 52274123)Tiandi Science and Technology Co.,Ltd.(No.2022-2-TDMS012)。
文摘This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency.
基金Project(2019JJ20028)supported by the Outstanding Youth Science Foundations of Hunan Province of ChinaProject(51774321)supported by the National Natural Science Foundation of ChinaProject(2018YFC0604606)supported by the State Key Research Development Program of China。
文摘The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure behavior under impact loading,intact granite specimens and specimens with different flaw inclinations are tested by a modified split Hopkinson pressure bar(SHPB)and digital image correlation(DIC)method.The results show that peak strain and dynamic strength of intact specimens and specimens with different flaw angles(α)decrease with the increase of axial static pressure.The 90°flaw has weak reduction effect on peak strain,dynamic strength and combined strength,while 45°and 0°flaws have remarkable reduction effect.Specimens with 90°flaw are suffered combined shear and tensile failure under middle and low axial static pre-stresses,and suffered shear failure under high axial static pre-stresses.Specimens with 45°and 0°flaws are suffered oblique shear failure caused by pre-existing flaw under different axial static pre-stresses.Besides,based on digital image correlation method,it is found that micro-cracks before formation of macro fractures(include shear and tensile fractures)belong to tensile cracks.Tensile and shear strain localizations at pre-existing flaw tip for specimen with 45°and 0°flaws are produced much earlier than that at other positions.
文摘Development and expansion of cities in one hand and increasing transport needs on the other hand have been causing underground constructions. So understanding the behavior of these structures is essential. Ground displacement around the tunneling area is one of the most important issues which have been studied by many researchers, while the effects of the slope behavior of the ground on the tunnel is paid less attention. This study will have analyzed the effects of frequency and surface slope on the surface subsidence caused by tunneling under dynamic loads (without structure). The results show that the frequency and surface slope have significant effects on the land displacements and the area surrounded by a tunnel.
基金Supported by the National Science and Technology Special Project of China(2008ZX05038-004)Shandong Province Science and Technology Development Project(2009GG10007008)
文摘The mathematical model of dynamic loads was developed based on an analysis of the polished rod load of beam pumps, and the variation of the dynamic loads and the computation of the minimum and maximum limits during a complete pumping cycle were given out by solving the model.Field examples verify that it is necessary to take into account the inertial and vibration loads while calculating polished rod loads.During the prophase of the pumping production, the dynamic to polished rod load ratio is relatively large.Then the ratio decreases rapidly and becomes small after entering stable production.Moreover, the total deformation of rod and tubing in CBM wells is much smaller than that in oil fields, and the deformation caused by the dynamic loads is also relatively small.The result of this work is the calculation of the dynamic loads.The application of this calculation for the sucker rod pumping system in CBM wells can give the desired accuracy of polished rod load and the dynamometer cards, which provides a reasonable basis for the design and selection of beam pumps.
基金supported by JUST start-up fund for science research,the Jiangsu Natural Science Foundation(Grant No.BK20210885).
文摘According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio.
基金supported by the National Natural Science Foundation of China(Grant Nos.62073184,52105490).
文摘The vibration disturbance from an external environment affects the machining accuracy of ultra-precision machining equipment.Most active vibration-isolation systems(AVIS)have been developed based on static loads.When a vibration-isolation load changes dynamically during ultra-precision turning lathe machining,the system parameters change,and the efficiency of the active vibration-isolation system based on the traditional control strategy deteriorates.To solve this problem,this paper proposes a vibration-isolation control strategy based on a genetic algorithm-back propagation neural network-PID control(GA-BP-PID),which can automatically adjust the control parameters according to the machining conditions.Vibration-isolation simulations and experiments based on passive vibration isolation,a PID algorithm,and the GA-BP-PID algorithm under dynamic load machining conditions were conducted.The experimental results demonstrated that the active vibration-isolation control strategy designed in this study could effectively attenuate vibration disturbances in the external environment under dynamic load conditions.This design is reasonable and feasible.
基金supported by the National Natural Science Foundation of China(Grant Nos.52204104 and U19A2098)the Science and Technology Department of Sichuan Province,China(Grant No.2023YFH0022).
文摘For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of dynamic loading orientation on the stability of the twin-tunnel,a split Hopkinson pressure bar(SHPB)apparatus was used to conduct a dynamic test on the twin-tunnel specimens.The two tunnels were rotated around the specimen’s center to consider the effect of dynamic loading orientation.LS-DYNA software was used for numerical simulation to reveal the failure properties and stress wave propagation law of the twin-tunnel specimens.The findings indicate that,for a twin-tunnel exposed to a dynamic load from different orientations,the crack initiation position appears most often at the tunnel corner,tunnel spandrel,and tunnel floor.As the impact direction is created by a certain angle(30°,45°,60°,120°,135°,and 150°),the fractures are produced in the middle of the line between the left tunnel corner and the right tunnel spandrel.As the impact loading angle(a)is 90°,the tunnel sustains minimal damage,and only tensile fractures form in the surrounding rocks.The orientation of the impact load could change the stress distribution in the twin-tunnel,and major fractures are more likely to form in areas where the tensile stress is concentrated.
基金supported by the National Natural Science Foundation of China(No.U1965203).
文摘To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth.
基金supported by the National Nature Science Foundation of China under 62203376the Science and Technology Plan of Hebei Education Department under QN2021139+1 种基金the Nature Science Foundation of Hebei Province under F2021203043the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology under No.XTCX202203.
文摘Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.
基金supported by the National Natural Science Foundation of China (Grant No. 12302238)the National Key Research and Development Program of China (Grant Nos. 2021YFB3400701, 2022YFB3402904)。
文摘The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input.
基金Supported by National Natural Science Foundation of China(No.10472134 and No.50490274)
文摘By means of the improved split Hopkionson pressure bar(SHPB) with axial pre-pressure and confined pressure, two series of experiments on sandstone are carried out to research the failure mode of rock during the course of exploitation of resources in deep. One is under the conditions that the con-fining pressure is fixed and the axial pressure is changeable. The other is under the conditions that the confining pressure becomes and the axial pressure is fixed. It is found that samples break up evenly after impacting when axial static pressures are low, there is great disparity in size of fragments when axial static pressures are high, and the main bodies of samples after the tests under the combination of dy-namic and static loads frequently show the type of V or X. The samples are more close-grained at the elastic stage and impacts make many cracks be generated and developed, as makes samples more crackable. At the initial phase of damage stage, the static pressures make some cracks in the samples which are undeveloped and the impacts′ role is similar to that at the elastic stage. At the metaphase or anaphase of damage stage, these cracks in the samples develop adequately and the impacts mainly accelerate samples′ failure. The main bodies of samples show the type of V or X after impacting due to the confining pressures′ restraining samples′ lateral formation at the elastic stage or the initial phase of damage stage, the main bodies of samples have almost formed at the stage loading static pressures and the results after impacting usually are similar to those under the axial pressures tests.
基金National Science Foundation of China (No.50974059No.50934006)
文摘This paper puts forward a new rock fragmentation loading method of dual-cutter head combined dynamic and static loads. By applying the numerical simulation software - RFPA2D, we have done numerical experiment about the sihstone' s crushing effect by dynamic load on single cutter head without confining pressure, dynamic load on single cut- ter head with confining pressure 10 MPa and different dual-cutter heads spacing by combined dynamic and static loads with confining pressure 10 MPa. Experimental results show that the confining pressure can obviously affect the rock frag- mentation effect. Combined dynamic and static loads can greatly improve the rock fragmentation effect. There exists an optimal spacing of dual-cutter head that can make the rock fragmentation achieve the desired effect. Through analyzing the acoustic emission accumulative energy and quantity, the authors make a conclusion that the optimum spacing is 30 mm.
基金fnancially supported by National Natural Science Foundation of China(Grant No.51974295).
文摘The retained coal in the end slope of an open-pit mine can be mined by the highwall mining techniques.However,the instability mechanism of the reserved rib pillar under dynamic loads of mining haul trucks and static loads of the overlying strata is not clear,which restricts the safe and efcient application of highwall mining.In this study,the load-bearing model of the rib pillar in highwall mining was established,the cusp catastrophe theory and the safety coefcient of the rib pillar were considered,and the criterion equations of the rib pillar stability were proposed.Based on the limit equilibrium theory,the limit stress of the rib pillar was analyzed,and the calculation equations of plastic zone width of the rib pillar in highwall mining were obtained.Based on the Winkler foundation beam theory,the elastic foundation beam model composed of the rib pillar and roof under the highwall mining was established,and the calculation equations for the compression of the rib pillar under dynamic and static loads were developed.The results showed that with the increase of the rib pillar width,the total compression of the rib pillar under dynamic and static loads decreases nonlinearly,and the compression of the rib pillar caused by static loads of the overlying strata and trucks has a decisive role.Numerical simulation and theoretical calculation were also performed in this study.In the numerical simulation,the coal seam with a buried depth of 122 m and a thickness of 3 m is mined by highwall mining techniques.According to the established rib pillar instability model of the highwall mining system,it is found that when the mining opening width is 3 m,the reasonable width of the rib pillar is at least 1.3 m,and the safety factor of the rib pillar is 1.3.The numerical simulation results are in good agreement with the results of theoretical calculation,which verifes the feasibility of the theoretical analysis of the rib pillar stability.This research provides a reference for the stability analysis of rib pillars under highwall mining.
基金Project(660)supported by University of Mohaghegh Ardabili,Iran
文摘Thin-walled tubes are increasingly used in automobile industries to improve structural safety.The present work deals with the collapse behavior of double-cell conical tubes subjected to dynamic axial and oblique loads.Crashworthiness of these tubes having different sections(e.g.,circular,square,hexagonal,octagonal,decagonal)was numerically investigated by using an experimentally validated finite element model generated in LS-DYNA.Geometry of these tubes was then optimized by decreasing the cross section dimensions at the distal end while the weight remained unchanged.Octagonal conical tube was finally found to be more preferable to the others as a collision energy absorber.In addition,square and circular tubes showed diamond deformation mode,while the other tubes collapsed in concertina mode.A decision making method called TOPSIS was finally implemented on the numerical results to select the most efficient energy absorber.
基金the financial support from the China Postdoctoral Science Foundation(Nos.2022M713384,and 2022M721450)the National Natural Science Foundation of China(Nos.52174187,51704164,and 52130409)the Technology Innovation Fund of China Coal Research Institute(No.2020CX-I-07).
文摘Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the key factors that induce coal and gas outbursts.In this study,first,the coupling relationship between the gas pressure in the coal body ahead of the working face and the dynamic load was investigated using experimental observations,numerical simulations,and mine-site investigations.It was observed that the impact rate of the dynamic load on the gas-bearing coal can significantly change the gas pressure.The faster the impact rate,the speedier the increase in gas pressure.Moreover,the gas pressure rise was faster closer to the impact interface.Subsequently,based on engineering background,we proposed three models of stress and gas pressure distribution in the coal body ahead of the working face:static load,stress disturbance,and dynamic load conditions.Finally,the gas pressure distribution and outburst mechanism were investigated.The high concentration of gas pressure appearing at the coal body ahead of the working face was caused by the dynamic load.The gas pressure first increased gradually to a peak value and then decreased with increasing distance from the working face.The increase in gas pressure plays a major role in outburst initiation by resulting in the ability to more easily reach the critical points needed for outburst initiation.Moreover,the stronger the dynamic load,the greater the outburst initiation risk.The results of this study provide practical guidance for the early warning and prevention of coal and gas outbursts.
基金supported by the Vietnam National Foundation for Science and Technology Development(No.107.02-2015.11)
文摘The nonlinear analysis with an analytical approach on dynamic torsional buckling of stiffened functionally graded thin toroidal shell segments is investigated. The shell is reinforced by inside stiffeners and surrounded by elastic foundations in a thermal environment and under a time-dependent torsional load. The governing equations are derived based on the Donnell shell theory with the yon Karman geometrical nonlinearity, the Stein and McElman assumption, the smeared stiffeners technique, and the Galerkin method. A deflection function with three terms is chosen. The thermal parameters of the uniform temperature rise and nonlinear temperature conduction law are found in an explicit form. A closed-form expression for determining the static critical torsional load is obtained. A critical dynamic torsional load is found by the fourth-order Runge-Kutta method and the Budiansky-Roth criterion. The effects of stiffeners, foundations, material, and dimensional parameters on dynamic responses of shells are considered.
基金China National Nature Science Foundation(Grant No.11872119)Foundation Strengthening Project(Grant No.2020-JCJQ-ZD-220)for supporting this project。
文摘The study of high-energy and low-vulnerability propellants is important for the power performance and safety of solid propellant rocket motors.The modified split Hopkinson pressure bar(SHPB)tests are performed on two kinds of propellant with different crosslinking density to study the dynamic mechanical responses and damage-ignition mechanism.SHPB apparatus is equipped with a highperformance infrared camera and high-speed camera to capture the deformation,damage-ignition feature and temperature evolution images in the impact process.The results suggested that the mechanical responses and damage-ignition mechanism of the propellants were affected by the strain rates and crosslinking density.The damage-ignition degree is more intense and the reaction occurs earlier with the increase of strain rates.For propellant 1 with higher crosslinking density,the critical ignition strain rate is 4500 s^(-1).Two kinds of propellants show different ignition mechanism,i.e.crack generation,propagation and final fracture for propellant 1 while viscous shear flow for propellant 2.Meanwhile,the SEM images also reveal the difference of damage-ignition mechanism of the two kinds of propellants.Finally,the ignition mechanism under different strain rates and critical ignition strain rate of propellants are further explained by the theoretical calculation of temperature variations.
基金National Natural Science Foundation of China (Grant No.51804079)Fujian Natural Science Foundation (Grant No.2019J05039)
文摘It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution of backfilled stopes is critical to maintain the long-term stope stability and ensure safe mining activities. This paper aims to study the damage evolution of the backfill material and its host rock behaviour under three-dimensional(3D) dynamic loading. Using a true-triaxial testing machine, multiple samples of backfill material enclosed by country rock were fabricated and tested under various dynamic loadings with different true-triaxial confining stress conditions. In addition, the nuclear magnetic resonance(NMR) measurement was conducted on the samples before and after exerting static and dynamic loading to obtain their porosity distribution changes. The experiment results suggested that with the increase of the dynamic loading, the porosity of the backfill sample goes through a two-stage process,which shows a slightly linear decrease and then followed by an exponential increase. The research findings can help understand the damage mechanism and fracture development of backfilled stopes and its host rock in deep underground mines, which are constantly subject to the combination of 3D static confining stress and dynamic loading.
文摘The damage properties of two types of rocks under dynamic loading are studied. The shock induced experiments are done using planar impact technique on the one? stage light gas gun, and the ultrasonic tests on the damaged rocks have been made by use of the ultrasonic pulse? transmission method. The shock induced damage of rock is related to the shock speed and the attenuation coefficient of sonic wave, and the latter reflects the damage degree in rock fairly well. The attenuation coefficient α can be used as main damage parameter for constructing damage model of rock under dynamic loading.