期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Structure–performance relationship of Au nanoclusters in electrocatalysis:Metal core and ligand structure
1
作者 Bowen Li Lianmei Kang +3 位作者 Yongfeng Lun Jinli Yu Shuqin Song Yi Wang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期63-89,共27页
Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclu... Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions. 展开更多
关键词 Au nanoclusters CORE electrocatalytic performance LIGAND STRUCTURES
下载PDF
The component-activity interrelationship of cobalt-based bifunctional electrocatalysts for overall water splitting:Strategies and performance
2
作者 Mingjie Sun Riyue Ge +4 位作者 Sean Li Liming Dai Yiran Li Bin Liu Wenxian Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期453-474,共22页
Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysi... Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysis systems based on cobalt-based monofunctional hydrogen evolution reaction(HER)or oxygen evolution reaction(OER)catalysts have certain shortcomings in terms of resource utilization and universality.In contrast,cobalt-based bifunctional catalysts(CBCs)have attracted much attention in recent years for overall water splitting systems because of their practicality and reduced preparation cost of electrolyzer.This review aims to address the latest development in CBCs for total hydrolysis.The main modification strategies of CBCs are systematically classified in water electrolysis to provide an overview of how to regulate their morphology and electronic configuration.Then,the catalytic performance of CBCs in total-hydrolysis is summarized according to the types of cobalt-based phosphides,sulfides and oxides,and the mechanism of strengthened electrocatalytic ability is emphasized through combining experiments and theoretical calculations.Future efforts are finally suggested to focus on exploring the dynamic conversion of reaction intermediates and building near-industrial CBCs,designing advanced CBC materials through micro-modulation,and addressing commercial applications. 展开更多
关键词 COBALT Bifunctional electrocatalysis Water splitting Modification strategies electrocatalytic performances
下载PDF
Metal-organic framework derived NiFe_(2)O_(4)/FeNi_(3)@C composite for efficient electrocatalytic oxygen evolution reaction
3
作者 Fangna Dai Zhifei Wang +6 位作者 Huakai Xu Chuanhai Jiang Yuguo Ouyang Chunyu Lu Yuan Jing Shiwei Yao Xiaofei Wei 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1914-1921,共8页
Reducing the cost and improving the electrocatalytic activity are the key to developing high efficiency electrocatalysts for oxygen evolution reaction(OER).Here,bimetallic NiFe-based metal-organic framework(MOF)was pr... Reducing the cost and improving the electrocatalytic activity are the key to developing high efficiency electrocatalysts for oxygen evolution reaction(OER).Here,bimetallic NiFe-based metal-organic framework(MOF)was prepared by solvothermal method,and then used as precursor to prepare NiFe-based MOF-derived materials by pyrolysis.The effects of different metal ratios and pyrolysis temperatures on the sample structure and OER electrocatalytic performance were investigated and compared.The experimental results showed that when the metal molar ratio was Fe:Ni=1:5 and the pyrolysis temperature was 450℃,the sample(FeNi_(5)-MOF-450)exhibits a composite structure of Ni Fe_(2)O_(4)/FeNi_(3)/C and owns the superior electrocatalytic activity in OER.When the current density is 100 mA·cm^(-2),the overpotential of the sample was 377 mV with Tafel slope of 56.2 mV·dec^(-1),which indicates that FeNi_(5)-MOF-450 exhibits superior electrocatalytic performance than the commercial RuO_(2).Moreover,the long-term stability of FeNi_(5)-MOF-450 further promotes its development in OER.This work demonstrated that the regulatory methods such as component optimization can effectively improve the OER catalytic performance of NiFe-based MOF-derived materials. 展开更多
关键词 metal-organic framework derivatives NiFe-based electrocatalysts electrocatalytic performance oxygen evolution reaction
下载PDF
Facile synthesis of 3D nanoporous Pd/Co_2O_3 composites with enhanced catalytic performance for methanol oxidation 被引量:3
4
作者 Yan-yan SONG Dong DUAN +2 位作者 Wen-yu SHI Hai-yang WANG Zhan-bo SUN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第4期676-686,共11页
To simultaneously reduce noble metal Pd usage and enhance electrocatalytic performance for methanol oxidation,Pd/Co2O3 composites with ultrafine three-dimensional(3D)nanoporous structures were designed and synthesized... To simultaneously reduce noble metal Pd usage and enhance electrocatalytic performance for methanol oxidation,Pd/Co2O3 composites with ultrafine three-dimensional(3D)nanoporous structures were designed and synthesized by simple one-step dealloying of a melt-spun Al-Pd-Co alloy with an alkaline solution.Their electrocatalytic activity in alkaline media was determined by a Versa-STAT MC workstation.The results indicate that the typical sizes of the ligaments and pores of the composites were approximately 8-9 nm.The Co2O3 was uniformly distributed on the Pd ligament surface.Among the as-prepared samples,the nanoporous Pd/Co2O3 composite generated from dealloying of the Al84.5Pd15Co0.5 alloy had the best electrocatalytic activity,and its activity was enhanced by approximately 230%compared with the nanoporous Pd from dealloying of Al85Pd15.The improvement of the electrocatalytic performance was mainly attributed to the electronic modification effect between Pd and Co as well as the bifunctional mechanism between Pd and Co2O3. 展开更多
关键词 nanoporous Pd/Co2O3 DEALLOYING Al-Pd-Co alloy electrocatalytic performance methanol oxidation
下载PDF
Preparation of WC@TiO2 Core-shell Nanocomposite and Its Electrocatalytic Characteristics 被引量:1
5
作者 李国华 陈丹 +2 位作者 姚国新 施斌斌 马淳安 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第1期145-150,共6页
Monotungsten carbide and titania nanocomposite with core-shell(WC@TiO2)structure was prepared by a new approach of spray drying and reduction-carbonization reaction,with titania nanopowder and ammonium metatungstate... Monotungsten carbide and titania nanocomposite with core-shell(WC@TiO2)structure was prepared by a new approach of spray drying and reduction-carbonization reaction,with titania nanopowder and ammonium metatungstate as precursors,methane as carbon source,and hydrogen as reduction gas.The sample was characterized by X-ray diffraction,scanning electron microscope,high resolution transmission electron microscope and X-ray energy dispersion spectroscopy.The results show that its crystal phase is composed of brookite,tungsten and monotungsten carbide.The morphology of the sample particle is irregular sphere-like,with a diameter smaller than 100 nm.Its chemical components are titanium,tungsten,carbon and oxygen.Monotungsten carbide nanoparticles lie on the surface of titania core and form an incomplete shell around titania core in the nanocomposite.The measurement with a microelectrode system of three electrodes shows that the sample is electrocatalytic active to nitrophenol in basic solution at room temperature.Its peak potential is at0.988 V(vs saturated calomel electrode (SCE)),which is more negative than the peak potential,0.817 V(vs SCE),of mesoporous monotungsten carbide, and its peak current is 8.809μA,which is higher than the peak current,4.058μA,of mesoporous monotungsten carbide.The hydrogen generation potential of the sample is at1.199 V(vs SCE),which is more negative than that of pure nanosized monotungsten carbide at1.100 V(vs SCE).These results show that the presence of titania in the sample can lower the peak potential of nitrophenol electrocatalysis and its hydrogen generation potential,and increase its peak current of nitrophenol electrocatalysis in basic solution at room temperature.This indicates a synergistic effect of titania and monotungsten carbide in electrocatalysis. 展开更多
关键词 tungsten carbide TITANIA NANOCOMPOSITE CORE-SHELL electrocatalytic performance
下载PDF
Plastic supported platinum modified nickel electrode and its high electrocatalytic activity for sodium borohydride electrooxidation 被引量:1
6
作者 Bin Wang Dongming Zhang +4 位作者 Ke Ye Kui Cheng Dianxue Cao Guiling Wang Xiaoli Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第4期497-502,共6页
A novel plastic/multi-walled carbon nanotube(MWNTs)-nickel(Ni)-platinum(Pt) electrode(PMNP) is prepared by chemical-reducing Pt onto the surface of Ni film covered plastic/MWNTs(PM) substrate. The MWNTs are ... A novel plastic/multi-walled carbon nanotube(MWNTs)-nickel(Ni)-platinum(Pt) electrode(PMNP) is prepared by chemical-reducing Pt onto the surface of Ni film covered plastic/MWNTs(PM) substrate. The MWNTs are adhered by a piece of commercial double faced adhesive tape on the surface of plastic paper and the Ni film is prepared by a simple electrodeposition method. The morphology and phase structure of the PMNP electrode are characterized by scanning electron microscopy,transmission electron microscope and X-ray diffractometer. The catalytic activity of the PMNP electrode for Na BH4 electrooxidation is investigated by means of cyclic voltammetry and chronoamperometry. The catalyst combines tightly with the plastic paper and exhibits a good stability. MWNTs serve as both conductive material and hydrogen storage material and the Ni film and Pt are employed as electrochemical catalysts. The PMNP electrode exhibits a high electrocatalytic performance and the oxidation current density reaches to 10.76 A/(mg·cm) in 0.1 mol/dm3 Na BH4at0 V,which is much higher than those in the previous reports. The using of waste plastic reduces the discarding of white pollution and consumption of metal resources. 展开更多
关键词 Plastic Platinum modified nickel electrode Chemical-reducing High electrocatalytic performance Reduce white pollution
下载PDF
Synthesis of noble metal-based intermetallic electrocatalysts by space-confined pyrolysis:Recent progress and future perspective
7
作者 Lei Zhao Rui Wu +4 位作者 Junjie Wang Zhao Li Xinxin Wei Jun Song Chen Yuan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期61-74,共14页
Noble metal-based intermetallics are promising electrocatalysts for sustainable energy conversion and consumption processes.High-temperature pyrolysis(>500°C)methods are used to control their crystalline order... Noble metal-based intermetallics are promising electrocatalysts for sustainable energy conversion and consumption processes.High-temperature pyrolysis(>500°C)methods are used to control their crystalline orderings,critical to their electrocatalytic activity and durability.However,the high temperature would cause severe aggregation,resulting in a low catalytic active surface area.Significant research efforts have been devoted to addressing this issue.This short review summarizes recent research progress on synthesizing noble metal-based intermetallic electrocatalysts by space-confined pyrolysis.We focus on three strategies:isolation in pores,coverture by shells,and immobilization by salts.The advantages and existing problems of different methods are highlighted.Last,important issues to be addressed in future research are also discussed.We hope that this article will stimulate future research to develop high-performance intermetallic catalysts for practical applications. 展开更多
关键词 Intermetallic nanoparticles ANNEALING Space-confined approaches Particle size electrocatalytic performance
下载PDF
Boosting CO_(2) electroreduction performance over fullerene-modified MOF-545-Co promoted by π –π interaction
8
作者 Xue Dong Zhifeng Xin +4 位作者 Dong He Jia-Ling Zhang Ya-Qian Lan Qian-Feng Zhang Yifa Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第4期559-563,共5页
Metal-organic frameworks(MOFs) have showed high promise in CO_(2)-electroreduction, yet their generally insufficient conductivity or low electron-transfer efficiency have largely restricted the wide-spread application... Metal-organic frameworks(MOFs) have showed high promise in CO_(2)-electroreduction, yet their generally insufficient conductivity or low electron-transfer efficiency have largely restricted the wide-spread applications. Herein, fullerene molecules(i.e., C60and C70) have been successfully introduced into the pore-channels of a Co-porphyrin based MOF through a facile strategy. Thus-obtained hybrid materials present higher electron-transfer ability, enhanced CO_(2)adsorption-enthalpy and CO_(2)electroreduction activity. Notably, the charge transfer resistance(Rct) of C60@MOF-545-Co is almost 5 times lower of than that of MOF-545-Co, as well as 1.5 times increased for the CO_(2)adsorption enthalpy. As expect, the FECO of C60@MOF-545-Co(97.0%) is largely higher than MOF-545-Co(70.2%), C60@MOF-545(19.4%), C60(11.5%)and physical mixture(70.3%) and presented as one of the best CO_(2)electroreduction catalysts reported in H-cell system. The facile strategy would give rise to new insight into the exploration of powerful MOFbased hybrid materials in high-efficiency CO_(2)electroreduction. 展开更多
关键词 FULLERENE Metal organic framework electrocatalytic performance π-πinteraction CO_(2)RR
原文传递
Recent advances of high-entropy electrocatalysts for water electrolysis by electrodeposition technology:a short review
9
作者 Han-Ming Zhang Shao-Fei Zhang +5 位作者 Li-Hao Zuo Jia-Kang Li Jun-Xia Guo Peng Wang Jin-Feng Sun Lei Dai 《Rare Metals》 SCIE EI CAS CSCD 2024年第6期2371-2390,共20页
Hydrogen is considered as the promising energy carrier to substitute traditional fossil fuel,due to its cleanliness,renewability and high energy density.Water electrolysis is a simple and eonvenient technology for hyd... Hydrogen is considered as the promising energy carrier to substitute traditional fossil fuel,due to its cleanliness,renewability and high energy density.Water electrolysis is a simple and eonvenient technology for hydrogen production.The efficiency of water electrolysis for hydrogen production is limited by the electrocatalytic performances on hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The exorbitant Pt-and Ir-/Ru-based electrocatalysts as optimal HER and OER electrocatalysts,respectively,restrict water electrolysis development.Recently,non-precious metal-based high-entropy electrocatalysts have exhibited excellent electrocatalytic activities and long-term stabilities for water electrolysis,as promising precious cataly st candidates.Therefore,the construction of the high-entropy electroc atalysts is vital to water electrolysis industry.Electrodeposition technology is an efficient method for the preparation of high-entropy electrocatalysts due to its simple,fast,energy-saving and environmental-friendly advantages.Multi-component co-precipitation facilely occurs during the electroredox in electrodeposition processes.High-entropy alloys,oxides,(oxy)hydroxides,phosphides and phosphorus sulfide oxides have been successfully prepared by galvanostatic,potentiostatic electrodeposition,cyclic voltammetry,pulse,nanodroplet-mediated and cathodic plasma electrodeposition techniques.Hence,introduction of the development of high-entropy electrocatalysts synthesized by electrodeposition technology is significant to researchers and industries.Challenges and outlooks are also concluded to boost the industrial application of electrodeposition in water electrolysis and other energy conversion areas. 展开更多
关键词 High-entropy electrocatalysts Electrodeposition technology Water electrolysis Multi-component co-precipitation Excellent electrocatalytic performances
原文传递
A review of energy and environment electrocatalysis based on high-index faceted nanocrystals 被引量:13
10
作者 Yun-Rui Li Ming-Xuan Li +3 位作者 Shu-Na Li Yu-Jie Liu Juan Chen Yao Wang 《Rare Metals》 SCIE EI CAS CSCD 2021年第12期3406-3441,共36页
Today,nanocrystals enclosed by high-index facets(HIFs)are attracting widely attentions of researchers due to their tremendous potential in the field of catalysis,especially in electrocatalysis,such as electro-oxidatio... Today,nanocrystals enclosed by high-index facets(HIFs)are attracting widely attentions of researchers due to their tremendous potential in the field of catalysis,especially in electrocatalysis,such as electro-oxidation of small organic molecule(such as formic acid,methanol,and ethanol),oxygen reduction reaction(ORR),hydrogen evolution reaction(HER),as well as the oxygen evolution reaction(OER).However,the practical applications of nanocrystals enclosed by HIFs still face many limitations in preparations of advanced electrocatalysts,including preparation strategy,limited life-time and stability.The development of advanced electrocatalysts enclosed with HIFs is crucial for solving these problems if the large-scale application of them is to be realized.Herein,we firstly detailedly demonstrate the identification methods of nanocrystals enclosed by HIFs,and then preparation strategies are elaborated in detail in this review.Current advanced nanocrystals enclosed by HIFs in electrocatalytic application are also summarized and we present representative achievements to further reveal the relationship of excellent electrocatalytic performance and nanocrystals with HIFs.Finally,we predict the remaining challenges and present our perspectives with regards of design strategies of improving electrocatalytic performance of Ptbased catalysts in the future. 展开更多
关键词 Nanocrystals with high-index facets High surface free energy electrocatalytic performance Water splitting Fuel cell
原文传递
Fiber Materials for Electrocatalysis Applications 被引量:8
11
作者 Fangzhou Zhang Jun Chen Jianping Yang 《Advanced Fiber Materials》 SCIE EI 2022年第4期720-735,共16页
Fiber materials are promising for electrocatalysis applications due to their structural features including high surface area,controllable chemical compositions,and abundant composite forms.In the past decade,considera... Fiber materials are promising for electrocatalysis applications due to their structural features including high surface area,controllable chemical compositions,and abundant composite forms.In the past decade,considerable research efforts have been devoted to construct advanced fiber materials possessing conductive network(to facilitate efficient electron transport)and large specific surface area(to support massive catalytically active sites)to boost electrocatalysis performance.Herein,we focused on recent advances in fiber-based electrocatalyst with enhanced electrocatalytic activity.Moreover,the synthesis,structure,and properties of fiber materials and their applications in hydrogen evolution reaction,oxygen evolution reaction,oxygen reduction reaction,carbon dioxide reduction reaction,and nitrogen reduction reaction are discussed.Finally,the research challenges and future prospects of fiber materials in electrocatalysis applications are proposed. 展开更多
关键词 Fiber electrocatalyst Synthesis approach Structural feature Structural engineering electrocatalytic performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部