In the process of solving Euler vectors based on GNSS horizontal movement field,the number of estimated parameters can affect Euler vector results. This issue is analyzed through theoretical deduction and practical ex...In the process of solving Euler vectors based on GNSS horizontal movement field,the number of estimated parameters can affect Euler vector results. This issue is analyzed through theoretical deduction and practical example in this paper. Firstly,the difference between the results of Euler vectors in different solving models is deduced. Meanwhile, based on GNSS horizontal movement field in the Chinese mainland from 2004 to 2007,two common models( RRM and REHSM) are used to discuss the impact of solving models on Euler vectors and the follow-up study. The result shows that the maximum value of the difference in a block's entire rotation can reach 2. 6mm /a,and should not be ignored. Therefore,the results of horizontal movement are different using different kinematic block models,and this should be paid more attention in the analysis of crustal horizontal movement.展开更多
The crustal movements of the Chinese mainland include an average regional movement trend of the mainland and complex local deformations. Thus, both trends in the crustal movement of the mainland and local distortions ...The crustal movements of the Chinese mainland include an average regional movement trend of the mainland and complex local deformations. Thus, both trends in the crustal movement of the mainland and local distortions should be simultaneously taken into consideration in crustal movement estimations. A combined collocation model based on Euler vector (taken as trend parameters) and local distortions (taken as signals) is proposed in this paper. We assume that prior covariance matrices between signals and observations should be consistent with their uncertainties. Otherwise, the station movement estimates provided by the collocation will be distorted. Thus, an adaptive collocation estimator based on simplified Helmert variance components is applied. This means that the contributions of signals and observations to estimates of crustal movements are balanced and reasonable, and consistent covariance matrices of the signals and observations are achieved through the adjustment of the adaptive factor. The calculation of actual horizontal movements of the Chinese crust shows that the estimates of horizontal crustal movement velocities are made more accurate by the adaptive collocation model.展开更多
Originally, the kinetic flux vector splitting (KFVS) scheme was developed as a numerical method to solve gas dynamic problems. The main idea in the approach is to construct the flux based on the microscopical descript...Originally, the kinetic flux vector splitting (KFVS) scheme was developed as a numerical method to solve gas dynamic problems. The main idea in the approach is to construct the flux based on the microscopical description of the gas. In this paper, based on the analogy between the shallow water wave equations and the gas dynamic equations, we develop an explicit KFVS method for simulating the shallow water wave equations. A 1D steady flow and a 2D unsteady flow are presented to show the robust and accuracy of the KFVS scheme.展开更多
Many animals possess actively movable tactile sensors in their heads,to explore the near-range space.During locomotion,an antenna is used in near range orientation,for example,in detecting,localizing,probing,and negot...Many animals possess actively movable tactile sensors in their heads,to explore the near-range space.During locomotion,an antenna is used in near range orientation,for example,in detecting,localizing,probing,and negotiating obstacles.A bionic tactile sensor used in the present work was inspired by the antenna of the stick insects.The sensor is able to detect an obstacle and its location in 3 D(Three dimensional) space.The vibration signals are analyzed in the frequency domain using Fast Fourier Transform(FFT) to estimate the distances.Signal processing algorithms,Artificial Neural Network(ANN) and Support Vector Machine(SVM) are used for the analysis and prediction processes.These three prediction techniques are compared for both distance estimation and material classification processes.When estimating the distances,the accuracy of estimation is deteriorated towards the tip of the probe due to the change in the vibration modes.Since the vibration data within that region have high a variance,the accuracy in distance estimation and material classification are lower towards the tip.The change in vibration mode is mathematically analyzed and a solution is proposed to estimate the distance along the full range of the probe.展开更多
基金sponsored by the Special Earthquake Research Project Granted by the China Earthquake Administration(201308009,201208006)
文摘In the process of solving Euler vectors based on GNSS horizontal movement field,the number of estimated parameters can affect Euler vector results. This issue is analyzed through theoretical deduction and practical example in this paper. Firstly,the difference between the results of Euler vectors in different solving models is deduced. Meanwhile, based on GNSS horizontal movement field in the Chinese mainland from 2004 to 2007,two common models( RRM and REHSM) are used to discuss the impact of solving models on Euler vectors and the follow-up study. The result shows that the maximum value of the difference in a block's entire rotation can reach 2. 6mm /a,and should not be ignored. Therefore,the results of horizontal movement are different using different kinematic block models,and this should be paid more attention in the analysis of crustal horizontal movement.
基金supported by National Natural Science Foundation of China (Grant Nos. 41020144004 and 41004013)
文摘The crustal movements of the Chinese mainland include an average regional movement trend of the mainland and complex local deformations. Thus, both trends in the crustal movement of the mainland and local distortions should be simultaneously taken into consideration in crustal movement estimations. A combined collocation model based on Euler vector (taken as trend parameters) and local distortions (taken as signals) is proposed in this paper. We assume that prior covariance matrices between signals and observations should be consistent with their uncertainties. Otherwise, the station movement estimates provided by the collocation will be distorted. Thus, an adaptive collocation estimator based on simplified Helmert variance components is applied. This means that the contributions of signals and observations to estimates of crustal movements are balanced and reasonable, and consistent covariance matrices of the signals and observations are achieved through the adjustment of the adaptive factor. The calculation of actual horizontal movements of the Chinese crust shows that the estimates of horizontal crustal movement velocities are made more accurate by the adaptive collocation model.
基金Foundation item:Supported by the National Key Grant Program of Basic(2002CCA01200)original funding of Jilin Universitythe Project-sponsord by SRF for ROCS,SME
文摘Originally, the kinetic flux vector splitting (KFVS) scheme was developed as a numerical method to solve gas dynamic problems. The main idea in the approach is to construct the flux based on the microscopical description of the gas. In this paper, based on the analogy between the shallow water wave equations and the gas dynamic equations, we develop an explicit KFVS method for simulating the shallow water wave equations. A 1D steady flow and a 2D unsteady flow are presented to show the robust and accuracy of the KFVS scheme.
文摘Many animals possess actively movable tactile sensors in their heads,to explore the near-range space.During locomotion,an antenna is used in near range orientation,for example,in detecting,localizing,probing,and negotiating obstacles.A bionic tactile sensor used in the present work was inspired by the antenna of the stick insects.The sensor is able to detect an obstacle and its location in 3 D(Three dimensional) space.The vibration signals are analyzed in the frequency domain using Fast Fourier Transform(FFT) to estimate the distances.Signal processing algorithms,Artificial Neural Network(ANN) and Support Vector Machine(SVM) are used for the analysis and prediction processes.These three prediction techniques are compared for both distance estimation and material classification processes.When estimating the distances,the accuracy of estimation is deteriorated towards the tip of the probe due to the change in the vibration modes.Since the vibration data within that region have high a variance,the accuracy in distance estimation and material classification are lower towards the tip.The change in vibration mode is mathematically analyzed and a solution is proposed to estimate the distance along the full range of the probe.