Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,reasonable drought simulations have remained a challenge, and the related performances of the curr...Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,reasonable drought simulations have remained a challenge, and the related performances of the current state-of-the-art Coupled Model Intercomparison Project phase 6(CMIP6) models remain unknown. Here, both the strengths and weaknesses of CMIP6 models in simulating droughts and corresponding hydrothermal conditions in drylands are assessed.While the general patterns of simulated meteorological elements in drylands resemble the observations, the annual precipitation is overestimated by ~33%(with a model spread of 2.3%–77.2%), along with an underestimation of potential evapotranspiration(PET) by ~32%(17.5%–47.2%). The water deficit condition, measured by the difference between precipitation and PET, is 50%(29.1%–71.7%) weaker than observations. The CMIP6 models show weaknesses in capturing the climate mean drought characteristics in drylands, particularly with the occurrence and duration largely underestimated in the hyperarid Afro-Asian areas. Nonetheless, the drought-associated meteorological anomalies, including reduced precipitation, warmer temperatures, higher evaporative demand, and increased water deficit conditions, are reasonably reproduced. The simulated magnitude of precipitation(water deficit) associated with dryland droughts is overestimated by 28%(24%) compared to observations. The observed increasing trends in drought fractional area,occurrence, and corresponding meteorological anomalies during 1980–2014 are reasonably reproduced. Still, the increase in drought characteristics, associated precipitation and water deficit are obviously underestimated after the late 1990s,especially for mild and moderate droughts, indicative of a weaker response of dryland drought changes to global warming in CMIP6 models. Our results suggest that it is imperative to employ bias correction approaches in drought-related studies over drylands by using CMIP6 outputs.展开更多
An internal defect meter is an instrument to detect the internal inclusion defects of cold-rolled strip steel.The detection accuracy of the equipment can be evaluated based on the similarity of the multiple detection ...An internal defect meter is an instrument to detect the internal inclusion defects of cold-rolled strip steel.The detection accuracy of the equipment can be evaluated based on the similarity of the multiple detection data obtained for the same steel coil.Based on the cosine similarity model and eigenvalue matrix model,a comprehensive evaluation method to calculate the weighted average of similarity is proposed.Results show that the new method is consistent with and can even replace artificial evaluation to realize the automatic evaluation of strip defect detection results.展开更多
Leveraging the Baidu Qianfan model platform,this paper designs and implements a highly efficient and accurate scoring system for subjective questions,focusing primarily on questions in the field of computer network te...Leveraging the Baidu Qianfan model platform,this paper designs and implements a highly efficient and accurate scoring system for subjective questions,focusing primarily on questions in the field of computer network technology.The system enhances the foundational model by utilizing Qianfan’s training tools and integrating advanced techniques,such as supervised fine-tuning.In the data preparation phase,a comprehensive collection of subjective data related to computer network technology is gathered,cleaned,and labeled.During model training and evaluation,optimal hyperparameters and tuning strategies are applied,resulting in a model capable of scoring with high accuracy.Evaluation results demonstrate that the proposed model performs well across multiple dimensions-content,expression,and development scores-yielding results comparable to those of manual scoring.展开更多
Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer ...Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer radiation belt electron fluxes.In the present study,we develop a forecast model of radiation belt electron fluxes based on the data assimilation method,in terms of Van Allen Probe measurements combined with three-dimensional radiation belt numerical simulations.Our forecast model can cover the entire outer radiation belt with a high temporal resolution(1 hour)and a spatial resolution of 0.25 L over a wide range of both electron energy(0.1-5.0 MeV)and pitch angle(5°-90°).On the basis of this model,we forecast hourly electron fluxes for the next 1,2,and 3 days during an intense geomagnetic storm and evaluate the corresponding prediction performance.Our model can reasonably predict the stormtime evolution of radiation belt electrons with high prediction efficiency(up to~0.8-1).The best prediction performance is found for~0.3-3 MeV electrons at L=~3.25-4.5,which extends to higher L and lower energies with increasing pitch angle.Our results demonstrate that the forecast model developed can be a powerful tool to predict the spatiotemporal changes in outer radiation belt electron fluxes,and the model has both scientific significance and practical implications.展开更多
BACKGROUND Gestational diabetes mellitus(GDM)is a condition characterized by high blood sugar levels during pregnancy.The prevalence of GDM is on the rise globally,and this trend is particularly evident in China,which...BACKGROUND Gestational diabetes mellitus(GDM)is a condition characterized by high blood sugar levels during pregnancy.The prevalence of GDM is on the rise globally,and this trend is particularly evident in China,which has emerged as a significant issue impacting the well-being of expectant mothers and their fetuses.Identifying and addressing GDM in a timely manner is crucial for maintaining the health of both expectant mothers and their developing fetuses.Therefore,this study aims to establish a risk prediction model for GDM and explore the effects of serum ferritin,blood glucose,and body mass index(BMI)on the occurrence of GDM.AIM To develop a risk prediction model to analyze factors leading to GDM,and evaluate its efficiency for early prevention.METHODS The clinical data of 406 pregnant women who underwent routine prenatal examination in Fujian Maternity and Child Health Hospital from April 2020 to December 2022 were retrospectively analyzed.According to whether GDM occurred,they were divided into two groups to analyze the related factors affecting GDM.Then,according to the weight of the relevant risk factors,the training set and the verification set were divided at a ratio of 7:3.Subsequently,a risk prediction model was established using logistic regression and random forest models,and the model was evaluated and verified.RESULTS Pre-pregnancy BMI,previous history of GDM or macrosomia,hypertension,hemoglobin(Hb)level,triglyceride level,family history of diabetes,serum ferritin,and fasting blood glucose levels during early pregnancy were determined.These factors were found to have a significant impact on the development of GDM(P<0.05).According to the nomogram model’s prediction of GDM in pregnancy,the area under the curve(AUC)was determined to be 0.883[95%confidence interval(CI):0.846-0.921],and the sensitivity and specificity were 74.1%and 87.6%,respectively.The top five variables in the random forest model for predicting the occurrence of GDM were serum ferritin,fasting blood glucose in early pregnancy,pre-pregnancy BMI,Hb level and triglyceride level.The random forest model achieved an AUC of 0.950(95%CI:0.927-0.973),the sensitivity was 84.8%,and the specificity was 91.4%.The Delong test showed that the AUC value of the random forest model was higher than that of the decision tree model(P<0.05).CONCLUSION The random forest model is superior to the nomogram model in predicting the risk of GDM.This method is helpful for early diagnosis and appropriate intervention of GDM.展开更多
A quantitative evaluation model that integrates kerogen adsorption and clay pore adsorption of shale oil was proposed,and the evaluation charts of adsorption-swelling capacity of kerogen(Mk)and adsorbed oil capacity o...A quantitative evaluation model that integrates kerogen adsorption and clay pore adsorption of shale oil was proposed,and the evaluation charts of adsorption-swelling capacity of kerogen(Mk)and adsorbed oil capacity of clay minerals(Mc)were established,taking the 1st member of Cretaceous Qingshankou Formation in the northern Songliao Basin as an example.The model and charts were derived from swelling oil experiments performed on naturally evolved kerogens and adsorbed oil experiments on clays(separated from shale core samples).They were constructed on the basis of clarifying the control law of kerogen maturity evolution on its adsorption-swelling capacity,and considering the effect of both the clay pore surface area that occupied by adsorbed oil and formation temperature.The results are obtained in four aspects:(1)For the Qing 1 Member shale,with the increase of maturity,Mk decreases.Given Ro of 0.83%–1.65%,Mk is about 50–250 mg/g.(2)The clay in shale adsorbs asphaltene.Mc is 0.63 mg/m^(2),and about 15%of the clay pore surface is occupied by adsorbed oil.(3)In the low to medium maturity stages,the shale oil adsorption is controlled by organic matter.When Ro>1.3%,the shale oil adsorption capacity is contributed by clay pores.(4)The oil adsorption capacity evaluated on the surface at room temperature is 8%–22%(avg.15%)higher than that is held in the formations.The proposed evaluation model reveals the occurrence mechanisms of shale oils with different maturities,and provides a new insight for estimating the reserves of shale oil under formation temperature conditions.展开更多
In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes...In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes the related research work of employment quality evaluation,establishes the employment quality evaluation index system,collects the index data,and normalizes the index data;Then,the weight value of employment quality evaluation index is determined by Grey relational analysis method,and some unimportant indexes are removed;Finally,the employment quality evaluation model is established by using fuzzy cluster analysis algorithm,and compared with other employment quality evaluation models.The test results show that the employment quality evaluation accuracy of the design model exceeds 93%,the employment quality evaluation error can meet the requirements of practical application,and the employment quality evaluation effect is much better than the comparison model.The comparison test verifies the superiority of the model.展开更多
Dispersed computing is a new resourcecentric computing paradigm.Due to its high degree of openness and decentralization,it is vulnerable to attacks,and security issues have become an important challenge hindering its ...Dispersed computing is a new resourcecentric computing paradigm.Due to its high degree of openness and decentralization,it is vulnerable to attacks,and security issues have become an important challenge hindering its development.The trust evaluation technology is of great significance to the reliable operation and security assurance of dispersed computing networks.In this paper,a dynamic Bayesian-based comprehensive trust evaluation model is proposed for dispersed computing environment.Specifically,in the calculation of direct trust,a logarithmic decay function and a sliding window are introduced to improve the timeliness.In the calculation of indirect trust,a random screening method based on sine function is designed,which excludes malicious nodes providing false reports and multiple malicious nodes colluding attacks.Finally,the comprehensive trust value is dynamically updated based on historical interactions,current interactions and momentary changes.Simulation experiments are introduced to verify the performance of the model.Compared with existing model,the proposed trust evaluation model performs better in terms of the detection rate of malicious nodes,the interaction success rate,and the computational cost.展开更多
As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically ev...As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically evaluate the water resources carrying capacity is the premise to improve the regional water resources carrying capacity and ensure the regional water security.The Gansu section of the Yellow River basin is an important water conservation and recharge area.Whether the water resources in this area can ensure the normal operation of the ecosystem and whether it can carry the sustainable development of social economy is the key to realize the high-quality development of the Yellow River basin.In this study,from the three dimensions of water consumption per capita,water consumption of 10000 yuan GDP and ecological water use rate,by constructing the evaluation index system and index grading standard of water resources carrying capacity,the fuzzy comprehensive evaluation model was used to evaluate the water resources carrying capacity of Gansu section of the Yellow River Basin,in order to provide theoretical decision-making basis for the comprehensive development,utilization and planning management of water resources in Gansu section of the Yellow River basin and even the whole basin,and help the high-quality development of the Yellow River basin.展开更多
The reasonable determination of ecological flow is of great significance for the efforts to promote the transformation of water ecological environmental protection from pollution management to synergistic management o...The reasonable determination of ecological flow is of great significance for the efforts to promote the transformation of water ecological environmental protection from pollution management to synergistic management of water resources,water ecology and water environment,and to promote them in an integrated manner.This paper analyzed and calculated the ecological flow process of the Bangsha River diversion power station using the minimum ecological flow method,the annual spreading method,the improved annual spreading method,the NGPRP method,and the month-by-month frequency method,and evaluated the reasonableness of the process and results of the ecological flow calculations by using the fuzzy evaluation model established.The study showed that the minimum ecological flow rate determined by improving the coupling of the spreading method and the NGPRP method was the best,and the suitable ecological flow rate determined by the month-by-month frequency method was the best;the minimum ecological flow rate of the Bangsha River diversion power station was at 0.43-4.21 m 3/s,and the suitable ecological flow rate was at 0.56-4.94 m 3/s,and the trend of its change showed the trend of first increasing and then decreasing,and the trend of change from January to July showed the trend of first increasing and then decreasing.Its trend of change showed an increasing and then decreasing trend,from January to July showed a gradually increasing trend,from August to December showed a gradually decreasing trend.It aimed to provide a theoretical basis for the reasonable determination of the ecological flow of the river hydropower station.展开更多
Objective To study the influencing factors on the development of biopharmaceutical park,and to construct an evaluation model of the influencing factors for biopharmaceutical park in China.Methods By analyzing various ...Objective To study the influencing factors on the development of biopharmaceutical park,and to construct an evaluation model of the influencing factors for biopharmaceutical park in China.Methods By analyzing various factors affecting biopharmaceutical parks,an evaluation index system of biopharmaceutical parks and an evaluation model of influencing factors of biopharmaceutical park development based on fuzzy group decision making were established.Results and Conclusion Factors such as research and development(R&D)funding investment,incentive for transformation of scientific and technological achievements,and industrial clusters have a greater impact on the development of biopharmaceutical industrial parks in China.Local governments should increase the investment in R&D funding.Besides,they should pay attention to the incentive of transformation of scientific and technological achievements to improve the innovation ability of enterprises.Meanwhile,they should promote the clustering of high-tech enterprises to comprehensively enhance the healthy development of biopharmaceutical parks in China.展开更多
Due to the high potential risk and many influencing factors of subsea horizontal X-tree installation,to guarantee the successful completion of sea trials of domestic subsea horizontal X-trees,this paper established a ...Due to the high potential risk and many influencing factors of subsea horizontal X-tree installation,to guarantee the successful completion of sea trials of domestic subsea horizontal X-trees,this paper established a modular risk evaluation model based on a fuzzy fault tree.First,through the analysis of the main process oftree down and combining the Offshore&Onshore Reliability Data(OREDA)failure statistics and the operation procedure and the data provided by the job,the fault tree model of risk analysis of the tree down installation was established.Then,by introducing the natural language of expert comprehensive evaluation and combining fuzzy principles,quantitative analysis was carried out,and the fuzzy number was used to calculate the failure probability of a basic event and the occurrence probability of a top event.Finally,through a sensitivity analysis of basic events,the basic events of top events significantly affected were determined,and risk control and prevention measures for the corresponding high-risk factors were proposed for subsea horizontal X-tree down installation.展开更多
This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula...This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.展开更多
[Objective] The aim was to study on RBF model about evaluation on carrying capacity of water resources based on standardized indices. [Method] The indices were transformed and the averages of standard values in differ...[Objective] The aim was to study on RBF model about evaluation on carrying capacity of water resources based on standardized indices. [Method] The indices were transformed and the averages of standard values in different levels were taken as the standardized values of components of central vectors for basic functions of RBF hidden nodes. Hence, the basic functions are suitable for most indices, simplifying expression and calculation of basic functions. [Result] RBF models concluded through Monkey-king Genetic Algorithm with weights optimization are used in evaluation on water carrying capacity in three districts in Changwu County in Shaanxi Province, which were in consistent with that through fuzzy evaluation. [Conclusion] RBF, simple and practical, is universal and popular.展开更多
In order to evaluate the general situation and find special problems of the freeway incident management system, an evaluation model is proposed. First, the expert appraisal approach is used to select the primary evalu...In order to evaluate the general situation and find special problems of the freeway incident management system, an evaluation model is proposed. First, the expert appraisal approach is used to select the primary evaluation index. As a result, 81 indices and the hierarchical structures of the index such as the object layer, the sub-object layer, the criterion layer and the index layer are determined. Then, based on the fuzzy characteristics of each index layer, the analytical hierarchy process(AHP)and the fuzzy comprehensive evaluation are applied to generate the weight and the satisfaction of the index and the criterion layers. When analyzing the relationship between the sub-object layer and the object layer, it is easy to find that the number of sub-objects is too large and sub-objects are significantly redundant. The partial least square (PLS) is proposed to solve the problems. Finally, an application example, whose result has already been accepted and employed as the indication of a new project in improving incident management, is introduced and the result verifies the feasibility and efficiency of the model.展开更多
A new technique of dimension reduction named projection pursuit is applied to model and evaluatewetland soil quality variations in the Sanjiang Plain, Helongjiang Province, China. By adopting the im-proved real-coded ...A new technique of dimension reduction named projection pursuit is applied to model and evaluatewetland soil quality variations in the Sanjiang Plain, Helongjiang Province, China. By adopting the im-proved real-coded accelerating genetic algorithm (RAGA), the projection direction is optimized and multi-dimensional indexes are converted into low-dimensional space. Classification of wetland soils and evaluationof wetland soil quality variations are realized by pursuing optimum projection direction and projection func-tion value. Therefore, by adopting this new method, any possible human interference can be avoided andsound results can be achieved in researching quality changes and classification of wetland soils.展开更多
In this research, the residential environment index system and evaluation model were established by means of subjective and objective methods. The methodology for establishing the evaluation system for residential env...In this research, the residential environment index system and evaluation model were established by means of subjective and objective methods. The methodology for establishing the evaluation system for residential environment was first analyzed; then the subjective evaluation data-base was established by questionnaire survey; and at the same time, the objective evaluation data-base was constructed by Geographic Information System (GIS); and then the related equation system between subjective and objective system was developed by multiple regression analysis. This research could benefit evaluation of the residential environment quality for various purposes, and also provide important rudimentary data-base for the development and improvement of residential environment for officials. Furthermore, the index system and evaluation model established in this research could construct a strong relation between subjective evaluation and objective data; and thus could provide a comprehensive, efficient and effective methodology for the evaluation of residential environment.展开更多
This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the ...This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the dangerousness of this geological disaster.The losses that are caused by water and mud inrush are taken into consideration to account for its harmfulness.Then a risk evaluation model based on the dangerousness-harmfulness evaluation indicator system is constructed,which is more convincing in comparison with the traditional methods.The catastrophe theory is used to evaluate the risk level of water and mud inrush and it has great advantage in handling problems involving discontinuous catastrophe processes.To validate the proposed approach,the Qiyueshan tunnel of Yichang-Wanzhou Railway is taken as an example in which four target segments are evaluated using the risk evaluation model.Finally,the evaluation results are compared with the excavation data,which shows that the risk levels predicted by the proposed approach are in good agreements with that observed in engineering.In conclusion,the catastrophe theory-based risk evaluation model is an efficient and effective approach for water and mud inrush in karst tunnels.展开更多
Crop models can be useful tools ibr optimizing fertilizer management for a targeted crop yield while minimizing nutrient losses. In this paper, the parameters of the decision support system for agrotechnology transfer...Crop models can be useful tools ibr optimizing fertilizer management for a targeted crop yield while minimizing nutrient losses. In this paper, the parameters of the decision support system for agrotechnology transfer (DSSAT)-CERES-Maize were optimized using a new method to provide a better simulation of maize (Zea mays L.) growth and N upfake in response to different nitrogen application rates. Field data were collected from a 5 yr field experiment (2006-2010) on a Black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China. After cultivar calibration, the CERES-Maize model was able to simulate aboveground biomass and crop yield of in the evaluation data set (n-RMSE=5.0-14.6%), but the model still over-estimated aboveground N uptake (i.e., with E values from -4.4 to -21.3 kg N ha-~). By analyzing DSSAT equation, N stress coefficient for changes in concentration with growth stage (CTCNP2) is related to N uptake. Further sensitivity analysis of the CTCNP2 showed that the DSSAT model simulated maize nitrogen uptake more precisely after the CTCNP2 coefficient was adjusted to the field site condition. The results indicated that in addition to calibrating 6 coefficients of maize cultivars, radiation use efficiency (RUE), growing degree days for emergence (GDDE), N stress coefficient, CTCNP2, and soil fertility factor (SLPF) also need to be calibrated in order to simulate aboveground biomass, yield and N uptake correctly. Independent validation was conducted using 2008-2010 experiments and the good agreement between the simulated and the measured results indicates that the DSSAT CERES-Maize model could be a useful tool for predicting maize production in Northeast China.展开更多
Ecological demonstration area (EDA) is an authorized nomination, which should be assessed from several aspects, including ecological, social, environmental, economic ones and so on. It is difficult to advance an exact...Ecological demonstration area (EDA) is an authorized nomination, which should be assessed from several aspects, including ecological, social, environmental, economic ones and so on. It is difficult to advance an exact developing level index of EDA due to its indicator system’s complexity and disequilibrium. In this paper, a framework of indicators was set to evaluate, monitor and examine the comprehensive level of ecological demonstration area (EDA). Fuzzy logic method was used to develop the fuzzy comprehensive evaluation model (FCEM), which could quantitatively reveal the developing degree of EDA. Huiji District of Zhengzhou, Henan Province, one of the 9th group of national EDAs, was taken as a study case. The framework of FCEM for the integrated system included six subsystems, which were social, economic, ecological, rural, urban and accessorial description ones. The research would be valuable in the comprehensive quantitative evaluation of EDA and would work as a guide in the construction practices of Huiji ecological demonstration area.展开更多
基金supported by Ministry of Science and Technology of China (Grant No. 2018YFA0606501)National Natural Science Foundation of China (Grant No. 42075037)+1 种基金Key Laboratory Open Research Program of Xinjiang Science and Technology Department (Grant No. 2022D04009)the National Key Scientific and Technological Infrastructure project “Earth System Numerical Simulation Facility” (EarthLab)。
文摘Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,reasonable drought simulations have remained a challenge, and the related performances of the current state-of-the-art Coupled Model Intercomparison Project phase 6(CMIP6) models remain unknown. Here, both the strengths and weaknesses of CMIP6 models in simulating droughts and corresponding hydrothermal conditions in drylands are assessed.While the general patterns of simulated meteorological elements in drylands resemble the observations, the annual precipitation is overestimated by ~33%(with a model spread of 2.3%–77.2%), along with an underestimation of potential evapotranspiration(PET) by ~32%(17.5%–47.2%). The water deficit condition, measured by the difference between precipitation and PET, is 50%(29.1%–71.7%) weaker than observations. The CMIP6 models show weaknesses in capturing the climate mean drought characteristics in drylands, particularly with the occurrence and duration largely underestimated in the hyperarid Afro-Asian areas. Nonetheless, the drought-associated meteorological anomalies, including reduced precipitation, warmer temperatures, higher evaporative demand, and increased water deficit conditions, are reasonably reproduced. The simulated magnitude of precipitation(water deficit) associated with dryland droughts is overestimated by 28%(24%) compared to observations. The observed increasing trends in drought fractional area,occurrence, and corresponding meteorological anomalies during 1980–2014 are reasonably reproduced. Still, the increase in drought characteristics, associated precipitation and water deficit are obviously underestimated after the late 1990s,especially for mild and moderate droughts, indicative of a weaker response of dryland drought changes to global warming in CMIP6 models. Our results suggest that it is imperative to employ bias correction approaches in drought-related studies over drylands by using CMIP6 outputs.
文摘An internal defect meter is an instrument to detect the internal inclusion defects of cold-rolled strip steel.The detection accuracy of the equipment can be evaluated based on the similarity of the multiple detection data obtained for the same steel coil.Based on the cosine similarity model and eigenvalue matrix model,a comprehensive evaluation method to calculate the weighted average of similarity is proposed.Results show that the new method is consistent with and can even replace artificial evaluation to realize the automatic evaluation of strip defect detection results.
文摘Leveraging the Baidu Qianfan model platform,this paper designs and implements a highly efficient and accurate scoring system for subjective questions,focusing primarily on questions in the field of computer network technology.The system enhances the foundational model by utilizing Qianfan’s training tools and integrating advanced techniques,such as supervised fine-tuning.In the data preparation phase,a comprehensive collection of subjective data related to computer network technology is gathered,cleaned,and labeled.During model training and evaluation,optimal hyperparameters and tuning strategies are applied,resulting in a model capable of scoring with high accuracy.Evaluation results demonstrate that the proposed model performs well across multiple dimensions-content,expression,and development scores-yielding results comparable to those of manual scoring.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42025404, 42188101, and 42241143)the National Key R&D Program of China (Grant Nos. 2022YFF0503700 and 2022YFF0503900)+1 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000)the Fundamental Research Funds for the Central Universities (Grant No. 2042022kf1012)
文摘Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer radiation belt electron fluxes.In the present study,we develop a forecast model of radiation belt electron fluxes based on the data assimilation method,in terms of Van Allen Probe measurements combined with three-dimensional radiation belt numerical simulations.Our forecast model can cover the entire outer radiation belt with a high temporal resolution(1 hour)and a spatial resolution of 0.25 L over a wide range of both electron energy(0.1-5.0 MeV)and pitch angle(5°-90°).On the basis of this model,we forecast hourly electron fluxes for the next 1,2,and 3 days during an intense geomagnetic storm and evaluate the corresponding prediction performance.Our model can reasonably predict the stormtime evolution of radiation belt electrons with high prediction efficiency(up to~0.8-1).The best prediction performance is found for~0.3-3 MeV electrons at L=~3.25-4.5,which extends to higher L and lower energies with increasing pitch angle.Our results demonstrate that the forecast model developed can be a powerful tool to predict the spatiotemporal changes in outer radiation belt electron fluxes,and the model has both scientific significance and practical implications.
文摘BACKGROUND Gestational diabetes mellitus(GDM)is a condition characterized by high blood sugar levels during pregnancy.The prevalence of GDM is on the rise globally,and this trend is particularly evident in China,which has emerged as a significant issue impacting the well-being of expectant mothers and their fetuses.Identifying and addressing GDM in a timely manner is crucial for maintaining the health of both expectant mothers and their developing fetuses.Therefore,this study aims to establish a risk prediction model for GDM and explore the effects of serum ferritin,blood glucose,and body mass index(BMI)on the occurrence of GDM.AIM To develop a risk prediction model to analyze factors leading to GDM,and evaluate its efficiency for early prevention.METHODS The clinical data of 406 pregnant women who underwent routine prenatal examination in Fujian Maternity and Child Health Hospital from April 2020 to December 2022 were retrospectively analyzed.According to whether GDM occurred,they were divided into two groups to analyze the related factors affecting GDM.Then,according to the weight of the relevant risk factors,the training set and the verification set were divided at a ratio of 7:3.Subsequently,a risk prediction model was established using logistic regression and random forest models,and the model was evaluated and verified.RESULTS Pre-pregnancy BMI,previous history of GDM or macrosomia,hypertension,hemoglobin(Hb)level,triglyceride level,family history of diabetes,serum ferritin,and fasting blood glucose levels during early pregnancy were determined.These factors were found to have a significant impact on the development of GDM(P<0.05).According to the nomogram model’s prediction of GDM in pregnancy,the area under the curve(AUC)was determined to be 0.883[95%confidence interval(CI):0.846-0.921],and the sensitivity and specificity were 74.1%and 87.6%,respectively.The top five variables in the random forest model for predicting the occurrence of GDM were serum ferritin,fasting blood glucose in early pregnancy,pre-pregnancy BMI,Hb level and triglyceride level.The random forest model achieved an AUC of 0.950(95%CI:0.927-0.973),the sensitivity was 84.8%,and the specificity was 91.4%.The Delong test showed that the AUC value of the random forest model was higher than that of the decision tree model(P<0.05).CONCLUSION The random forest model is superior to the nomogram model in predicting the risk of GDM.This method is helpful for early diagnosis and appropriate intervention of GDM.
基金Supported by the National Natural Science Foundation of China(42102154,41922015,42072147)China Postdoctoral Science Foundation(2021M690168)Postdoctoral Innovation Talent Support Program of Shandong Province(SDBX2021004).
文摘A quantitative evaluation model that integrates kerogen adsorption and clay pore adsorption of shale oil was proposed,and the evaluation charts of adsorption-swelling capacity of kerogen(Mk)and adsorbed oil capacity of clay minerals(Mc)were established,taking the 1st member of Cretaceous Qingshankou Formation in the northern Songliao Basin as an example.The model and charts were derived from swelling oil experiments performed on naturally evolved kerogens and adsorbed oil experiments on clays(separated from shale core samples).They were constructed on the basis of clarifying the control law of kerogen maturity evolution on its adsorption-swelling capacity,and considering the effect of both the clay pore surface area that occupied by adsorbed oil and formation temperature.The results are obtained in four aspects:(1)For the Qing 1 Member shale,with the increase of maturity,Mk decreases.Given Ro of 0.83%–1.65%,Mk is about 50–250 mg/g.(2)The clay in shale adsorbs asphaltene.Mc is 0.63 mg/m^(2),and about 15%of the clay pore surface is occupied by adsorbed oil.(3)In the low to medium maturity stages,the shale oil adsorption is controlled by organic matter.When Ro>1.3%,the shale oil adsorption capacity is contributed by clay pores.(4)The oil adsorption capacity evaluated on the surface at room temperature is 8%–22%(avg.15%)higher than that is held in the formations.The proposed evaluation model reveals the occurrence mechanisms of shale oils with different maturities,and provides a new insight for estimating the reserves of shale oil under formation temperature conditions.
基金supported by the project of science and technology of Henan province under Grant No.222102240024 and 202102210269the Key Scientific Research projects in Colleges and Universities in Henan Grant No.22A460013 and No.22B413004.
文摘In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes the related research work of employment quality evaluation,establishes the employment quality evaluation index system,collects the index data,and normalizes the index data;Then,the weight value of employment quality evaluation index is determined by Grey relational analysis method,and some unimportant indexes are removed;Finally,the employment quality evaluation model is established by using fuzzy cluster analysis algorithm,and compared with other employment quality evaluation models.The test results show that the employment quality evaluation accuracy of the design model exceeds 93%,the employment quality evaluation error can meet the requirements of practical application,and the employment quality evaluation effect is much better than the comparison model.The comparison test verifies the superiority of the model.
基金supported in part by the National Science Foundation Project of P.R.China (No.61931001)the Fundamental Research Funds for the Central Universities under Grant (No.FRFAT-19-010)the Scientific and Technological Innovation Foundation of Foshan,USTB (No.BK20AF003)。
文摘Dispersed computing is a new resourcecentric computing paradigm.Due to its high degree of openness and decentralization,it is vulnerable to attacks,and security issues have become an important challenge hindering its development.The trust evaluation technology is of great significance to the reliable operation and security assurance of dispersed computing networks.In this paper,a dynamic Bayesian-based comprehensive trust evaluation model is proposed for dispersed computing environment.Specifically,in the calculation of direct trust,a logarithmic decay function and a sliding window are introduced to improve the timeliness.In the calculation of indirect trust,a random screening method based on sine function is designed,which excludes malicious nodes providing false reports and multiple malicious nodes colluding attacks.Finally,the comprehensive trust value is dynamically updated based on historical interactions,current interactions and momentary changes.Simulation experiments are introduced to verify the performance of the model.Compared with existing model,the proposed trust evaluation model performs better in terms of the detection rate of malicious nodes,the interaction success rate,and the computational cost.
基金Supported by Gansu Province 2023 Education Science and Technology Innovation Project(2023B-431).
文摘As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically evaluate the water resources carrying capacity is the premise to improve the regional water resources carrying capacity and ensure the regional water security.The Gansu section of the Yellow River basin is an important water conservation and recharge area.Whether the water resources in this area can ensure the normal operation of the ecosystem and whether it can carry the sustainable development of social economy is the key to realize the high-quality development of the Yellow River basin.In this study,from the three dimensions of water consumption per capita,water consumption of 10000 yuan GDP and ecological water use rate,by constructing the evaluation index system and index grading standard of water resources carrying capacity,the fuzzy comprehensive evaluation model was used to evaluate the water resources carrying capacity of Gansu section of the Yellow River Basin,in order to provide theoretical decision-making basis for the comprehensive development,utilization and planning management of water resources in Gansu section of the Yellow River basin and even the whole basin,and help the high-quality development of the Yellow River basin.
文摘The reasonable determination of ecological flow is of great significance for the efforts to promote the transformation of water ecological environmental protection from pollution management to synergistic management of water resources,water ecology and water environment,and to promote them in an integrated manner.This paper analyzed and calculated the ecological flow process of the Bangsha River diversion power station using the minimum ecological flow method,the annual spreading method,the improved annual spreading method,the NGPRP method,and the month-by-month frequency method,and evaluated the reasonableness of the process and results of the ecological flow calculations by using the fuzzy evaluation model established.The study showed that the minimum ecological flow rate determined by improving the coupling of the spreading method and the NGPRP method was the best,and the suitable ecological flow rate determined by the month-by-month frequency method was the best;the minimum ecological flow rate of the Bangsha River diversion power station was at 0.43-4.21 m 3/s,and the suitable ecological flow rate was at 0.56-4.94 m 3/s,and the trend of its change showed the trend of first increasing and then decreasing,and the trend of change from January to July showed the trend of first increasing and then decreasing.Its trend of change showed an increasing and then decreasing trend,from January to July showed a gradually increasing trend,from August to December showed a gradually decreasing trend.It aimed to provide a theoretical basis for the reasonable determination of the ecological flow of the river hydropower station.
文摘Objective To study the influencing factors on the development of biopharmaceutical park,and to construct an evaluation model of the influencing factors for biopharmaceutical park in China.Methods By analyzing various factors affecting biopharmaceutical parks,an evaluation index system of biopharmaceutical parks and an evaluation model of influencing factors of biopharmaceutical park development based on fuzzy group decision making were established.Results and Conclusion Factors such as research and development(R&D)funding investment,incentive for transformation of scientific and technological achievements,and industrial clusters have a greater impact on the development of biopharmaceutical industrial parks in China.Local governments should increase the investment in R&D funding.Besides,they should pay attention to the incentive of transformation of scientific and technological achievements to improve the innovation ability of enterprises.Meanwhile,they should promote the clustering of high-tech enterprises to comprehensively enhance the healthy development of biopharmaceutical parks in China.
基金financially supported by the National Ministry of Industry and Information Technology Innovation Special Project-Engineering Demonstration Application of Subsea Production System,Topic 4:Research on Subsea X-Tree and Wellhead Offshore Testing Technology(Grant No.MC-201901-S01-04)the Key Research and Development Program of Shandong Province(Major Innovation Project)(Grant Nos.2022CXGC020405,2023CXGC010415)。
文摘Due to the high potential risk and many influencing factors of subsea horizontal X-tree installation,to guarantee the successful completion of sea trials of domestic subsea horizontal X-trees,this paper established a modular risk evaluation model based on a fuzzy fault tree.First,through the analysis of the main process oftree down and combining the Offshore&Onshore Reliability Data(OREDA)failure statistics and the operation procedure and the data provided by the job,the fault tree model of risk analysis of the tree down installation was established.Then,by introducing the natural language of expert comprehensive evaluation and combining fuzzy principles,quantitative analysis was carried out,and the fuzzy number was used to calculate the failure probability of a basic event and the occurrence probability of a top event.Finally,through a sensitivity analysis of basic events,the basic events of top events significantly affected were determined,and risk control and prevention measures for the corresponding high-risk factors were proposed for subsea horizontal X-tree down installation.
基金supported by the Korea Meteorological Administration Research and Development Program “Developing Application Technology for Atmospheric Research Aircraft” (Grant No. KMA2018-00222)
文摘This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.
基金Supported by National Natural Science Foundation of China (51179110)~~
文摘[Objective] The aim was to study on RBF model about evaluation on carrying capacity of water resources based on standardized indices. [Method] The indices were transformed and the averages of standard values in different levels were taken as the standardized values of components of central vectors for basic functions of RBF hidden nodes. Hence, the basic functions are suitable for most indices, simplifying expression and calculation of basic functions. [Result] RBF models concluded through Monkey-king Genetic Algorithm with weights optimization are used in evaluation on water carrying capacity in three districts in Changwu County in Shaanxi Province, which were in consistent with that through fuzzy evaluation. [Conclusion] RBF, simple and practical, is universal and popular.
文摘In order to evaluate the general situation and find special problems of the freeway incident management system, an evaluation model is proposed. First, the expert appraisal approach is used to select the primary evaluation index. As a result, 81 indices and the hierarchical structures of the index such as the object layer, the sub-object layer, the criterion layer and the index layer are determined. Then, based on the fuzzy characteristics of each index layer, the analytical hierarchy process(AHP)and the fuzzy comprehensive evaluation are applied to generate the weight and the satisfaction of the index and the criterion layers. When analyzing the relationship between the sub-object layer and the object layer, it is easy to find that the number of sub-objects is too large and sub-objects are significantly redundant. The partial least square (PLS) is proposed to solve the problems. Finally, an application example, whose result has already been accepted and employed as the indication of a new project in improving incident management, is introduced and the result verifies the feasibility and efficiency of the model.
基金Project supported by the China Postdoctoral Science Foundation,the Youth Foundation of Sichuan University(No.432028)and the National High-Tech Research and Development Program of China(863 Program)(No.2002AA2Z4251).
文摘A new technique of dimension reduction named projection pursuit is applied to model and evaluatewetland soil quality variations in the Sanjiang Plain, Helongjiang Province, China. By adopting the im-proved real-coded accelerating genetic algorithm (RAGA), the projection direction is optimized and multi-dimensional indexes are converted into low-dimensional space. Classification of wetland soils and evaluationof wetland soil quality variations are realized by pursuing optimum projection direction and projection func-tion value. Therefore, by adopting this new method, any possible human interference can be avoided andsound results can be achieved in researching quality changes and classification of wetland soils.
文摘In this research, the residential environment index system and evaluation model were established by means of subjective and objective methods. The methodology for establishing the evaluation system for residential environment was first analyzed; then the subjective evaluation data-base was established by questionnaire survey; and at the same time, the objective evaluation data-base was constructed by Geographic Information System (GIS); and then the related equation system between subjective and objective system was developed by multiple regression analysis. This research could benefit evaluation of the residential environment quality for various purposes, and also provide important rudimentary data-base for the development and improvement of residential environment for officials. Furthermore, the index system and evaluation model established in this research could construct a strong relation between subjective evaluation and objective data; and thus could provide a comprehensive, efficient and effective methodology for the evaluation of residential environment.
基金Project(51378510)supported by National Natural Science Foundation of China。
文摘This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the dangerousness of this geological disaster.The losses that are caused by water and mud inrush are taken into consideration to account for its harmfulness.Then a risk evaluation model based on the dangerousness-harmfulness evaluation indicator system is constructed,which is more convincing in comparison with the traditional methods.The catastrophe theory is used to evaluate the risk level of water and mud inrush and it has great advantage in handling problems involving discontinuous catastrophe processes.To validate the proposed approach,the Qiyueshan tunnel of Yichang-Wanzhou Railway is taken as an example in which four target segments are evaluated using the risk evaluation model.Finally,the evaluation results are compared with the excavation data,which shows that the risk levels predicted by the proposed approach are in good agreements with that observed in engineering.In conclusion,the catastrophe theory-based risk evaluation model is an efficient and effective approach for water and mud inrush in karst tunnels.
基金funded by the National Basic Research Program of China (2007CB109306 and 2013CB127405)The authors acknowledge Ministry of Education,China,for providing the scholarship (2008325008)
文摘Crop models can be useful tools ibr optimizing fertilizer management for a targeted crop yield while minimizing nutrient losses. In this paper, the parameters of the decision support system for agrotechnology transfer (DSSAT)-CERES-Maize were optimized using a new method to provide a better simulation of maize (Zea mays L.) growth and N upfake in response to different nitrogen application rates. Field data were collected from a 5 yr field experiment (2006-2010) on a Black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China. After cultivar calibration, the CERES-Maize model was able to simulate aboveground biomass and crop yield of in the evaluation data set (n-RMSE=5.0-14.6%), but the model still over-estimated aboveground N uptake (i.e., with E values from -4.4 to -21.3 kg N ha-~). By analyzing DSSAT equation, N stress coefficient for changes in concentration with growth stage (CTCNP2) is related to N uptake. Further sensitivity analysis of the CTCNP2 showed that the DSSAT model simulated maize nitrogen uptake more precisely after the CTCNP2 coefficient was adjusted to the field site condition. The results indicated that in addition to calibrating 6 coefficients of maize cultivars, radiation use efficiency (RUE), growing degree days for emergence (GDDE), N stress coefficient, CTCNP2, and soil fertility factor (SLPF) also need to be calibrated in order to simulate aboveground biomass, yield and N uptake correctly. Independent validation was conducted using 2008-2010 experiments and the good agreement between the simulated and the measured results indicates that the DSSAT CERES-Maize model could be a useful tool for predicting maize production in Northeast China.
基金U nder the auspices of the M ajor State B asic R esearch D evelopm ent Program of C hina (973 Program ) (N o.2005C B 724205)
文摘Ecological demonstration area (EDA) is an authorized nomination, which should be assessed from several aspects, including ecological, social, environmental, economic ones and so on. It is difficult to advance an exact developing level index of EDA due to its indicator system’s complexity and disequilibrium. In this paper, a framework of indicators was set to evaluate, monitor and examine the comprehensive level of ecological demonstration area (EDA). Fuzzy logic method was used to develop the fuzzy comprehensive evaluation model (FCEM), which could quantitatively reveal the developing degree of EDA. Huiji District of Zhengzhou, Henan Province, one of the 9th group of national EDAs, was taken as a study case. The framework of FCEM for the integrated system included six subsystems, which were social, economic, ecological, rural, urban and accessorial description ones. The research would be valuable in the comprehensive quantitative evaluation of EDA and would work as a guide in the construction practices of Huiji ecological demonstration area.