An improved near far field divided coupled method was established to investigate the electromagnetic properties of mildly overexpanded and underexpanded rocket exhaust plumes. Firstly, axisymmetric Navier Stokes eq...An improved near far field divided coupled method was established to investigate the electromagnetic properties of mildly overexpanded and underexpanded rocket exhaust plumes. Firstly, axisymmetric Navier Stokes equations incorporated with k ε two equation turbulence models were solved using time dependent approach to calculate the pressure of the near filed. Secondly, parabolized axisymmetric Navier Stokes equations incorporated with finite rate chemical kinetics models were marching on the detailed pressure map of the near field. The termination of the near field would yield the initial line for the far field. In addition, in the far field, the spatial marching method was directly used under the constant pressure condition, but considering more complicated chemically reacting process. Finally, the electromagnetic parameters of the whole plume were calculated with the electron conductive model. The calculated results of the overexpanded and underexpanded rocket exhaust plume were discussed. The predicted microwave attenuation accorded with the experimental results. This improved method is feasible for calculating the microwave attenuation characteristics of mildly non fully expanded rocket exhaust plumes.展开更多
The general principle of utilizing the BGK equation to simulate a macroscopic gas flow is illustrated. Two typical examples, i.e., a low-speed axisymmetric submerged jet and the Prandtl-Meyer expansion to a vacuum, ar...The general principle of utilizing the BGK equation to simulate a macroscopic gas flow is illustrated. Two typical examples, i.e., a low-speed axisymmetric submerged jet and the Prandtl-Meyer expansion to a vacuum, are presented for validating the feasibility and accuracy of the BGK-equation simulation in continuum and non-continuum flow regimes. This approach is then used to simulate the exhaust plume formed by a small manoeuvre thruster of an artificial satellite in the outer space. The plume impingement on a flat surface perpendicular to the nozzle axis is also simulated by the same method. In the latter case the impingement force acting on the flat surface is calculated. When the flow reaches to the steady state the calculated impingement force is reasonably compared with the theoretical value of the nozzle thrust.展开更多
The infrared radiation signature of the plume from solid propellants with different energy characteristics is not the same. Three kinds of double-base propellants of different energy characteristics are chosen to meas...The infrared radiation signature of the plume from solid propellants with different energy characteristics is not the same. Three kinds of double-base propellants of different energy characteristics are chosen to measure the infrared spectral radiance from 1000 cm 1 to 4500 cm 1 of their plumes. The radiative spectrum is obtained in the tests. The experimental results indicate that the infrared radiation of the plume is determined by the energy characteristics of the propellant. The radiative transfer calculation models of the exhaust plume for the solid propellants are established. By including the chemical reaction source term and the radiation source term into the energy equation, the plume field and the radiative transfer are solved in a coupled way. The calculated results are consistent with the experimental data, so the reliability of the models is confirmed. The temperature distribution and the extent of the afterburning of the plume are distinct for the propellants of different energy characteristics, therefore the plume radiation varies for different propellants. The temperature of the fluid cell in the plume will increase or decrease to some extent by the influence of the radiation term.展开更多
One of the most important characteristic signatures of the exhaust plume from rocket motor is the aflerbuming phenomenon, and the injected water into the plume could inhibit the afterburning. The calculation model for...One of the most important characteristic signatures of the exhaust plume from rocket motor is the aflerbuming phenomenon, and the injected water into the plume could inhibit the afterburning. The calculation model for the gas-liquid multiphase flow field with chemical reaction in the plume is built. By inducing the energy source terms caused by the vaporization of liquid water, condensation of the vapor and chemical reaction in the energy equation, the gas-liquid multiphase flow field and the afterburning phenomenon are calculated in a coupling way. Mixture multiphase flow model is used to calculate the gas-liquid flow field, and the vaporization mechanism is used to investigate the water vaporization process. The temperature contours are obtained and accord well with the experimental photos. The mass fraction contours of primary species are obtained, which can indicate the extent of inhibition effect of water injection on the afterburning phenomenon in the plume. When water is injected into the plume, the region of aflerburning reduces a lot, and temperature on the ground wall declines rapidly, which can decrease the ablation of the combustion gas to the launch ground.展开更多
The infrared(IR) irradiance signature from rocket motor exhaust plumes is closely related to motor type,propellant composition,burn time,rocket geometry,chamber parameters and flight conditions.In this paper,an infr...The infrared(IR) irradiance signature from rocket motor exhaust plumes is closely related to motor type,propellant composition,burn time,rocket geometry,chamber parameters and flight conditions.In this paper,an infrared signature analysis tool(IRSAT) was developed to understand the spectral characteristics of exhaust plumes in detail.Through a finite volume technique,flow field properties were obtained through the solution of axisymmetric Navier-Stokes equations with the Reynolds-averaged approach.A refined 13-species,30-reaction chemistry scheme was used for combustion effects and a k-e-Rtturbulence model for entrainment effects.Using flowfield properties as input data,the spectrum was integrated with a line of sight(LOS) method based on a single line group(SLG) model with Curtis-Godson approximation.The model correctly predicted spectral distribution in the wavelengths of 1.50–5.50 lm and had good agreement for its location with imaging spectrometer data.The IRSAT was then applied to discuss the effects of three operating conditions on IR signatures:(a) afterburning;(b) chamber pressure from ignition to cutoff;and(c) minor changes in the ratio of hydroxyl-terminated polybutadiene(HTPB) binder to ammonium perchlorate(AP) oxidizer in propellant.Results show that afterburning effects can increase the size and shape of radiance images with enhancement of radiation intensity up to 40%.Also,the total IR irradiance in different bands can be characterized by a non-dimensional chamber pressure trace in which the maximum discrepancy is less than 13% during ignition and engine cutoff.An increase of chamber pressure can lead to more distinct diamonds,whose distance intervals are extended,and the position of the first diamond moving backwards.In addition,an increase in HTPB/AP causes a significant jump in spectral intensity.The incremental rates of radiance intensity integrated in each band are linear with the increase of HTPB,and the growth rates of radiance intensities in some bands reach up to 50% as HTPB weight increases by 3%.展开更多
文摘An improved near far field divided coupled method was established to investigate the electromagnetic properties of mildly overexpanded and underexpanded rocket exhaust plumes. Firstly, axisymmetric Navier Stokes equations incorporated with k ε two equation turbulence models were solved using time dependent approach to calculate the pressure of the near filed. Secondly, parabolized axisymmetric Navier Stokes equations incorporated with finite rate chemical kinetics models were marching on the detailed pressure map of the near field. The termination of the near field would yield the initial line for the far field. In addition, in the far field, the spatial marching method was directly used under the constant pressure condition, but considering more complicated chemically reacting process. Finally, the electromagnetic parameters of the whole plume were calculated with the electron conductive model. The calculated results of the overexpanded and underexpanded rocket exhaust plume were discussed. The predicted microwave attenuation accorded with the experimental results. This improved method is feasible for calculating the microwave attenuation characteristics of mildly non fully expanded rocket exhaust plumes.
基金The project supported by Beijing Institute of Spacecraft Overall Design
文摘The general principle of utilizing the BGK equation to simulate a macroscopic gas flow is illustrated. Two typical examples, i.e., a low-speed axisymmetric submerged jet and the Prandtl-Meyer expansion to a vacuum, are presented for validating the feasibility and accuracy of the BGK-equation simulation in continuum and non-continuum flow regimes. This approach is then used to simulate the exhaust plume formed by a small manoeuvre thruster of an artificial satellite in the outer space. The plume impingement on a flat surface perpendicular to the nozzle axis is also simulated by the same method. In the latter case the impingement force acting on the flat surface is calculated. When the flow reaches to the steady state the calculated impingement force is reasonably compared with the theoretical value of the nozzle thrust.
基金the National Natural Science Foundation of China(Grant No.11072032)
文摘The infrared radiation signature of the plume from solid propellants with different energy characteristics is not the same. Three kinds of double-base propellants of different energy characteristics are chosen to measure the infrared spectral radiance from 1000 cm 1 to 4500 cm 1 of their plumes. The radiative spectrum is obtained in the tests. The experimental results indicate that the infrared radiation of the plume is determined by the energy characteristics of the propellant. The radiative transfer calculation models of the exhaust plume for the solid propellants are established. By including the chemical reaction source term and the radiation source term into the energy equation, the plume field and the radiative transfer are solved in a coupled way. The calculated results are consistent with the experimental data, so the reliability of the models is confirmed. The temperature distribution and the extent of the afterburning of the plume are distinct for the propellants of different energy characteristics, therefore the plume radiation varies for different propellants. The temperature of the fluid cell in the plume will increase or decrease to some extent by the influence of the radiation term.
文摘One of the most important characteristic signatures of the exhaust plume from rocket motor is the aflerbuming phenomenon, and the injected water into the plume could inhibit the afterburning. The calculation model for the gas-liquid multiphase flow field with chemical reaction in the plume is built. By inducing the energy source terms caused by the vaporization of liquid water, condensation of the vapor and chemical reaction in the energy equation, the gas-liquid multiphase flow field and the afterburning phenomenon are calculated in a coupling way. Mixture multiphase flow model is used to calculate the gas-liquid flow field, and the vaporization mechanism is used to investigate the water vaporization process. The temperature contours are obtained and accord well with the experimental photos. The mass fraction contours of primary species are obtained, which can indicate the extent of inhibition effect of water injection on the afterburning phenomenon in the plume. When water is injected into the plume, the region of aflerburning reduces a lot, and temperature on the ground wall declines rapidly, which can decrease the ablation of the combustion gas to the launch ground.
基金supported by the National Natural Science Foundation of China(No.51576054)
文摘The infrared(IR) irradiance signature from rocket motor exhaust plumes is closely related to motor type,propellant composition,burn time,rocket geometry,chamber parameters and flight conditions.In this paper,an infrared signature analysis tool(IRSAT) was developed to understand the spectral characteristics of exhaust plumes in detail.Through a finite volume technique,flow field properties were obtained through the solution of axisymmetric Navier-Stokes equations with the Reynolds-averaged approach.A refined 13-species,30-reaction chemistry scheme was used for combustion effects and a k-e-Rtturbulence model for entrainment effects.Using flowfield properties as input data,the spectrum was integrated with a line of sight(LOS) method based on a single line group(SLG) model with Curtis-Godson approximation.The model correctly predicted spectral distribution in the wavelengths of 1.50–5.50 lm and had good agreement for its location with imaging spectrometer data.The IRSAT was then applied to discuss the effects of three operating conditions on IR signatures:(a) afterburning;(b) chamber pressure from ignition to cutoff;and(c) minor changes in the ratio of hydroxyl-terminated polybutadiene(HTPB) binder to ammonium perchlorate(AP) oxidizer in propellant.Results show that afterburning effects can increase the size and shape of radiance images with enhancement of radiation intensity up to 40%.Also,the total IR irradiance in different bands can be characterized by a non-dimensional chamber pressure trace in which the maximum discrepancy is less than 13% during ignition and engine cutoff.An increase of chamber pressure can lead to more distinct diamonds,whose distance intervals are extended,and the position of the first diamond moving backwards.In addition,an increase in HTPB/AP causes a significant jump in spectral intensity.The incremental rates of radiance intensity integrated in each band are linear with the increase of HTPB,and the growth rates of radiance intensities in some bands reach up to 50% as HTPB weight increases by 3%.