In this paper, we evaluated comprehensively the structure and operation of open-loop interferometric optical fiber gyroscopes (IFOG). To complete the previous works, a digital approach to derive the rotation angle in ...In this paper, we evaluated comprehensively the structure and operation of open-loop interferometric optical fiber gyroscopes (IFOG). To complete the previous works, a digital approach to derive the rotation angle in optical fiber gyroscopes is investigated theoretically. Results are simulated by the MATLAB software;therefore we could compare the results in simulated area with the values derived from theory. Also, feedback Erbium-doped fiber amplifier (EFDA) FOGs, called FE-FOG, is categorized in closed-loop IFOGs. The procedure of finding the Sagnac shift for open-loop and closed-loop IFOG have been studied and compared to one another. The signal processing in the open-loop IFOG was simulated using Matlab software and for the closed-loop IFOG by PSCAD. In the open-loop IFOG the analogue formulation of the IFOG in order to extract the phase shift is analyzed. A novel and promising method for derivation of Sagnac phase shift based on digital finite impulse response filtering is proposed. Based on our simulation results, the reliability and accuracy of the method is determined. In the closed-loop IFOG, the shift was derived through frequent use of Sagnac loop. The output signal is injected in the input again as feedback. The shift phase between clockwise and counterclockwise waves in each complete route, including primary and feedback route, is identified as Sagnac shift phase.展开更多
为了降低光纤陀螺输出中的噪声分量,提出一种基于最小均方法与二代小波变换相结合的去噪方法。首先利用LMS算法进行前端预处理,提高信号的信噪比;然后使用SGWT去噪算法降噪,考虑到SGWT去噪算法易受阈值函数的影响,将模糊与平滑因子引入...为了降低光纤陀螺输出中的噪声分量,提出一种基于最小均方法与二代小波变换相结合的去噪方法。首先利用LMS算法进行前端预处理,提高信号的信噪比;然后使用SGWT去噪算法降噪,考虑到SGWT去噪算法易受阈值函数的影响,将模糊与平滑因子引入到传统软阈值法,以缩小估计小波系数和原小波系数两者之间的常值偏差;最后,将本文提出的算法应用于某型光纤陀螺的去噪研究中。实验结果表明,相对于SGWT去噪算法,采用LMS-SGWT算法处理后,光纤陀螺的信噪比从0.1698d B提高到2.0521 d B,方位对准误差从0.33°降低到0.13°。展开更多
文摘In this paper, we evaluated comprehensively the structure and operation of open-loop interferometric optical fiber gyroscopes (IFOG). To complete the previous works, a digital approach to derive the rotation angle in optical fiber gyroscopes is investigated theoretically. Results are simulated by the MATLAB software;therefore we could compare the results in simulated area with the values derived from theory. Also, feedback Erbium-doped fiber amplifier (EFDA) FOGs, called FE-FOG, is categorized in closed-loop IFOGs. The procedure of finding the Sagnac shift for open-loop and closed-loop IFOG have been studied and compared to one another. The signal processing in the open-loop IFOG was simulated using Matlab software and for the closed-loop IFOG by PSCAD. In the open-loop IFOG the analogue formulation of the IFOG in order to extract the phase shift is analyzed. A novel and promising method for derivation of Sagnac phase shift based on digital finite impulse response filtering is proposed. Based on our simulation results, the reliability and accuracy of the method is determined. In the closed-loop IFOG, the shift was derived through frequent use of Sagnac loop. The output signal is injected in the input again as feedback. The shift phase between clockwise and counterclockwise waves in each complete route, including primary and feedback route, is identified as Sagnac shift phase.
文摘为了降低光纤陀螺输出中的噪声分量,提出一种基于最小均方法与二代小波变换相结合的去噪方法。首先利用LMS算法进行前端预处理,提高信号的信噪比;然后使用SGWT去噪算法降噪,考虑到SGWT去噪算法易受阈值函数的影响,将模糊与平滑因子引入到传统软阈值法,以缩小估计小波系数和原小波系数两者之间的常值偏差;最后,将本文提出的算法应用于某型光纤陀螺的去噪研究中。实验结果表明,相对于SGWT去噪算法,采用LMS-SGWT算法处理后,光纤陀螺的信噪比从0.1698d B提高到2.0521 d B,方位对准误差从0.33°降低到0.13°。