With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation sa...With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation satellite system/inertial navigation system(GNSS/INS)integrated navigation systems can provide high-precision navigation information continuously.However,when this system is applied to indoor or GNSS-denied environments,such as outdoor substations with strong electromagnetic interference and complex dense spaces,it is often unable to obtain high-precision GNSS positioning data.The positioning and orientation errors will diverge and accumulate rapidly,which cannot meet the high-precision localization requirements in large-scale and long-distance navigation scenarios.This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a nonlinear optimizer factor graph optimization as the basis for multi-source optimization.Through the collected experimental data and simulation results,this system shows good performance in the indoor environment and the environment with partial GNSS signal loss.展开更多
To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection techniq...To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).展开更多
The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical ...The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical landslides and 2030 non-landslide points,which was randomly divided into two datasets for model training(70%)and model testing(30%).22 factors were initially selected to establish a landslide factor database.We applied the GeoDetector and recursive feature elimination method(RFE)to address factor optimization to reduce information redundancy and collinearity in the data.Thereafter,the frequency ratio method,multicollinearity test,and interactive detector were used to analyze and evaluate the optimized factors.Subsequently,the random forest(RF)model was used to create a landslide susceptibility map with original and optimized factors.The resultant hybrid models GeoDetector-RF and RFE-RF were evaluated and compared by the area under the receiver operating characteristic curve(AUC)and accuracy.The accuracy of the two hybrid models(0.868 for GeoDetector-RF and 0.869 for RFE-RF)were higher than that of the RF model(0.860),indicating that the hybrid models with factor optimization have high reliability and predictability.Both RFE-RF GeoDetector-RF had higher AUC values,respectively 0.863 and 0.860,than RF(0.853).These results confirm the ability of factor optimization methods to improve the performance of landslide susceptibility models.展开更多
In this paper, a new partial transmit sequence(PTS)scheme with low computational complexity is proposed for the problems of high computational complexity in the conventional PTS method. By analyzing the relationship...In this paper, a new partial transmit sequence(PTS)scheme with low computational complexity is proposed for the problems of high computational complexity in the conventional PTS method. By analyzing the relationship of candidate sequences in the PTS method under the interleaved partition method, it has been discovered that some candidate sequences generated by phase factor sequences have the same peak average power ratio(PAPR). Hence, phase factor sequences can be optimized to reduce their searching times. Then, the computational process of generating candidate sequences can be simplified by improving the utilization of data and minimizing the calculations of complex multiplication. The performance analysis shows that, compared with the conventional PTS scheme, the proposed approach significantly decreases the computational complexity and has no loss of PAPR performance.展开更多
In this research, determination of final slope for Maiduk copper mine of Kerman is investigated according to destabilizing factors of the mine. The development of the Maiduk Mine caused the extension of the mine area ...In this research, determination of final slope for Maiduk copper mine of Kerman is investigated according to destabilizing factors of the mine. The development of the Maiduk Mine caused the extension of the mine area and also withdrawal of its wall. So, optimizing possibility of mine slope is essential. Finally,the magnitude of optimized slopes for different walls of the mine in association with executive commands with better factors of safety is provided. The results show that the most important destabilizer factors are the presence of water and pore pressure in the faults and the main joints. With the omission of pore pressure, mine wall for the designed depth is quite stable. This requires a drainage pattern in the lifetime of the mine. In an optimistic point of view, the minimum factor of safety of the wall will be 2.81 even without drainage. This conclusion allows optimizing the slope to its maximum magnitude of 51 degree. With the pessimistic engineering judgment and with the higher SF, the magnitude of the slope is optimized to 47 degree.展开更多
The effects of process variables in Simultaneous Saccharification and Fermentation (SSF) of wheat bran flour were studied in bulk fermentation using a coculture of Aspergillus niger - Kluveromyces marxianus. The effec...The effects of process variables in Simultaneous Saccharification and Fermentation (SSF) of wheat bran flour were studied in bulk fermentation using a coculture of Aspergillus niger - Kluveromyces marxianus. The effect of substrate density, pH, temperature, and enzyme concentration on wheat bran was predicted by designing experiments in which a single parameter is varied keeping other variables at a constant level. The above parameters were optimized for a batch culture in a fermentor. Optimal values for substrate concentration, pH, temperature, and enzyme concentration during processing were 200 g/l, 5.5, 65°C, and 7.5 IU, respectively. In pre-treatment experiments, the concentration of enzymes and the pre-treatment temperature are highly correlated. The influence of pH, temperature, and substrate density on ethanol production was investigated. Temperature pH was determined as optimal, 32°C and 5.5, respectively. After 48 hours of fermentation at optimum pH, a solution of wheat bran containing a maximum of 6% starch produces a maximum of 22.9 g/l ethanol.展开更多
Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are eas...Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are easy to be blocked or reflected by obstacles such as walls and furniture.A resilient tightly-coupled inertial navigation system(INS)/UWB integration is proposed and implemented for indoor UAV navigation in this paper.A factor graph optimization(FGO)method enhanced by resilient stochastic model is established to cope with the indoor challenging scenarios.To deal with the impact of UWB non-line-of-sight(NLOS)signals and noise uncertainty,the conventional neural net-works(CNNs)are introduced into the stochastic modelling to improve the resilience and reliability of the integration.Based on the status that the UWB features are limited,a‘two-phase'CNNs structure was designed and implemented:one for signal classification and the other one for measurement noise prediction.The proposed resilient FGO method is tested on flighting UAV platform under actual indoor challenging scenario.Compared to classical FGO method,the overall positioning errors can be decreased from about 0.60 m to centimeter-level under signal block and reflection scenarios.The superiority of resilient FGO which effectively verified in constrained environment is pretty important for positioning accuracy and integrity for indoor navigation task.展开更多
We designed the window function of the optimal Gabor transform based on the time-frequency rotation property of the fractional Fourier transform. Thus, we obtained the adaptive optimal Gabor transform in the fractiona...We designed the window function of the optimal Gabor transform based on the time-frequency rotation property of the fractional Fourier transform. Thus, we obtained the adaptive optimal Gabor transform in the fractional domain and improved the time-frequency concentration of the Gabor transform. The algorithm first searches for the optimal rotation factor, then performs the p-th FrFT of the signal and, finally, performs time and frequency analysis of the FrFT result. Finally, the algorithm rotates the plane in the fractional domain back to the normal time-frequency plane. This promotes the application of FrFT in the field of high-resolution reservoir prediction. Additionally, we proposed an adaptive search method for the optimal rotation factor using the Parseval principle in the fractional domain, which simplifies the algorithm. We carried out spectrum decomposition of the seismic signal, which showed that the instantaneous frequency slices obtained by the proposed algorithm are superior to the ones obtained by the traditional Gabor transform. The adaptive time frequency analysis is of great significance to seismic signal processing.展开更多
Structure health monitoring based on diagnostic Lamb waves has been found to be one of the most promising techniques recently. This paper has a brief review of the new developments on this method including the basic n...Structure health monitoring based on diagnostic Lamb waves has been found to be one of the most promising techniques recently. This paper has a brief review of the new developments on this method including the basic novel of the method, fundamentals and mathematics of Lamb wave propagation, narrowband and wideband Lamb wave excitation methods, optimization of excitation factors and diagnostic Lamb wave interpretation methods.展开更多
In this paper,a novel opportunistic scheduling(OS)scheme with antenna selection(AS)for the energy harvesting(EH)cooperative communication system where the relay can harvest energy from the source transmission is propo...In this paper,a novel opportunistic scheduling(OS)scheme with antenna selection(AS)for the energy harvesting(EH)cooperative communication system where the relay can harvest energy from the source transmission is proposed.In this considered scheme,we take into both traditional mathematical analysis and reinforcement learning(RL)scenarios with the power splitting(PS)factor constraint.For the case of traditional mathematical analysis of a fixed-PS factor,we derive an exact closed-form expressions for the ergodic capacity and outage probability in general signal-to-noise ratio(SNR)regime.Then,we combine the optimal PS factor with performance metrics to achieve the optimal transmission performance.Subsequently,based on the optimized PS factor,a RL technique called as Q-learning(QL)algorithm is proposed to derive the optimal antenna selection strategy.To highlight the performance advantage of the proposed QL with training the received SNR at the destination,we also examine the scenario of QL scheme with training channel between the relay and the destination.The results illustrate that,the optimized scheme is always superior to the fixed-PS factor scheme.In addition,a better system parameter setting with QL significantly outperforms the traditional mathematical analysis scheme.展开更多
In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust...In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique(SUMT) interior point method of Nonlinear Programming(NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.展开更多
This paper developed a traffic safety management system (TSMS) for improving safety on county paved roads in Wyoming. TSMS is a strategic and systematic process to improve safety of roadway network. When funding is ...This paper developed a traffic safety management system (TSMS) for improving safety on county paved roads in Wyoming. TSMS is a strategic and systematic process to improve safety of roadway network. When funding is limited, it is important to identify the best combination of safety improvement projects to provide the most benefits to society in terms of crash reduction. The factors included in the proposed optimization model are annual safety budget, roadway inventory, roadway functional classification, historical crashes, safety improvement countermeasures, cost and crash reduction factors (CRFs) associated with safety improvement countermeasures, and average daily traffics (ADTs). This paper demonstrated how the proposed model can identify the best combination of safety improvement projects to maximize the safety benefits in terms of reducing overall crash frequency. Although the proposed methodology was implemented on the county paved road network of Wyoming, it could be easily modified for potential implementation on the Wyoming state highway system. Other states can also benefit by implementing a similar program within their jurisdictions.展开更多
A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal...A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range.展开更多
This paper is concerned with the adaptive robust cubature Kalman filtering problem for the case that the dynamics model error and the measurement model error exist simultaneously in the satellite attitude estimation s...This paper is concerned with the adaptive robust cubature Kalman filtering problem for the case that the dynamics model error and the measurement model error exist simultaneously in the satellite attitude estimation system. By using Hubel-based robust filtering methodology to correct the measurement covariance formulation of cubature Kalman filter, the proposed filtering algorithm could effectively suppress the measurement model error. To further enhance this effect and reduce the impact of the dynamics model error, two different adaptively robust filtering algorithms,one with the optimal adaptive factor based on the estimated covariance matrix of the predicted residuals and the other with multiple fading factors based on strong tracking algorithm, are developed and applied for the satellite attitude estimation. The quaternion is employed to represent the global attitude parameter, and three-dimensional generalized Rodrigues parameters are introduced to define the local attitude error. A multiplicative quaternion error is derived from the local attitude error to maintain quaternion normalization constraint in the filter. Simulation results indicate that the proposed novel algorithm could exhibit higher accuracy and faster convergence compared with the multiplicative extended Kalman filter, the unscented quaternion estimator, and the adaptive robust unscented Kalman filter.展开更多
The change in the maize moisture content during different growth stages is an important indicator to evaluate the growth status of maize.In particular,the moisture content during the grain-filling stage reflects the g...The change in the maize moisture content during different growth stages is an important indicator to evaluate the growth status of maize.In particular,the moisture content during the grain-filling stage reflects the grain quality and maturity and it can also be used as an important indicator for breeding and seed selection.At present,the drying method is usually used to calculate the moisture content and the dehydration rate at the grain-filling stage,however,it requires large sample size and long test time.In order to monitor the change in the moisture content at the maize grain-filling stage using small sample set,the Bootstrap re-sampling strategy-sample set partitioning based on joint x-y distances-partial least squares(Bootstrap-SPXY-PLS)moisture content monitoring model and near-infrared spectroscopy for small sample sizes of 10,20,and 50 were used.To improve the prediction accuracy of the model,the optimal number of factors of the model was determined and the comprehensive evaluation thresholds RVP(coefficient of determination(R^(2)),the root mean square error of cross-validation(RMSECV)and the root mean square error of prediction(RMSEP))was proposed for sub-model screening.The model exhibited a good performance for predicting the moisture content of the maize grain at the filling stage for small sample set.For the sample sizes of 20 and 50,the R^(2) values were greater than 0.99.The average deviations of the predicted and reference values of the model were 0.1078%,0.057%,and 0.0918%,respectively.Therefore,the model was effective for monitoring the moisture content at the grain-filling stage for a small sample size.The method is also suitable for the quantitative analysis of different concentrations using near-infrared spectroscopy and small sample size.展开更多
基金supported in part by the Guangxi Power Grid Company’s 2023 Science and Technol-ogy Innovation Project(No.GXKJXM20230169)。
文摘With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation satellite system/inertial navigation system(GNSS/INS)integrated navigation systems can provide high-precision navigation information continuously.However,when this system is applied to indoor or GNSS-denied environments,such as outdoor substations with strong electromagnetic interference and complex dense spaces,it is often unable to obtain high-precision GNSS positioning data.The positioning and orientation errors will diverge and accumulate rapidly,which cannot meet the high-precision localization requirements in large-scale and long-distance navigation scenarios.This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a nonlinear optimizer factor graph optimization as the basis for multi-source optimization.Through the collected experimental data and simulation results,this system shows good performance in the indoor environment and the environment with partial GNSS signal loss.
基金supported by the the National Science and Technology Council(Grant Number:NSTC 112-2221-E239-022).
文摘To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).
文摘The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical landslides and 2030 non-landslide points,which was randomly divided into two datasets for model training(70%)and model testing(30%).22 factors were initially selected to establish a landslide factor database.We applied the GeoDetector and recursive feature elimination method(RFE)to address factor optimization to reduce information redundancy and collinearity in the data.Thereafter,the frequency ratio method,multicollinearity test,and interactive detector were used to analyze and evaluate the optimized factors.Subsequently,the random forest(RF)model was used to create a landslide susceptibility map with original and optimized factors.The resultant hybrid models GeoDetector-RF and RFE-RF were evaluated and compared by the area under the receiver operating characteristic curve(AUC)and accuracy.The accuracy of the two hybrid models(0.868 for GeoDetector-RF and 0.869 for RFE-RF)were higher than that of the RF model(0.860),indicating that the hybrid models with factor optimization have high reliability and predictability.Both RFE-RF GeoDetector-RF had higher AUC values,respectively 0.863 and 0.860,than RF(0.853).These results confirm the ability of factor optimization methods to improve the performance of landslide susceptibility models.
基金supported by the National Natural Science Foundation of China(6167309361370152)the Science and Technology Project of Shenyang(F16-205-1-01)
文摘In this paper, a new partial transmit sequence(PTS)scheme with low computational complexity is proposed for the problems of high computational complexity in the conventional PTS method. By analyzing the relationship of candidate sequences in the PTS method under the interleaved partition method, it has been discovered that some candidate sequences generated by phase factor sequences have the same peak average power ratio(PAPR). Hence, phase factor sequences can be optimized to reduce their searching times. Then, the computational process of generating candidate sequences can be simplified by improving the utilization of data and minimizing the calculations of complex multiplication. The performance analysis shows that, compared with the conventional PTS scheme, the proposed approach significantly decreases the computational complexity and has no loss of PAPR performance.
文摘In this research, determination of final slope for Maiduk copper mine of Kerman is investigated according to destabilizing factors of the mine. The development of the Maiduk Mine caused the extension of the mine area and also withdrawal of its wall. So, optimizing possibility of mine slope is essential. Finally,the magnitude of optimized slopes for different walls of the mine in association with executive commands with better factors of safety is provided. The results show that the most important destabilizer factors are the presence of water and pore pressure in the faults and the main joints. With the omission of pore pressure, mine wall for the designed depth is quite stable. This requires a drainage pattern in the lifetime of the mine. In an optimistic point of view, the minimum factor of safety of the wall will be 2.81 even without drainage. This conclusion allows optimizing the slope to its maximum magnitude of 51 degree. With the pessimistic engineering judgment and with the higher SF, the magnitude of the slope is optimized to 47 degree.
文摘The effects of process variables in Simultaneous Saccharification and Fermentation (SSF) of wheat bran flour were studied in bulk fermentation using a coculture of Aspergillus niger - Kluveromyces marxianus. The effect of substrate density, pH, temperature, and enzyme concentration on wheat bran was predicted by designing experiments in which a single parameter is varied keeping other variables at a constant level. The above parameters were optimized for a batch culture in a fermentor. Optimal values for substrate concentration, pH, temperature, and enzyme concentration during processing were 200 g/l, 5.5, 65°C, and 7.5 IU, respectively. In pre-treatment experiments, the concentration of enzymes and the pre-treatment temperature are highly correlated. The influence of pH, temperature, and substrate density on ethanol production was investigated. Temperature pH was determined as optimal, 32°C and 5.5, respectively. After 48 hours of fermentation at optimum pH, a solution of wheat bran containing a maximum of 6% starch produces a maximum of 22.9 g/l ethanol.
基金National Natural Science Foundation of China(Grant No.62203111)the Open Research Fund of State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University(Grant No.21P01)the Foundation of Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology,Ministry of Education,China(Grant No.SEU-MIAN-202101)to provide fund for conducting experiments。
文摘Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are easy to be blocked or reflected by obstacles such as walls and furniture.A resilient tightly-coupled inertial navigation system(INS)/UWB integration is proposed and implemented for indoor UAV navigation in this paper.A factor graph optimization(FGO)method enhanced by resilient stochastic model is established to cope with the indoor challenging scenarios.To deal with the impact of UWB non-line-of-sight(NLOS)signals and noise uncertainty,the conventional neural net-works(CNNs)are introduced into the stochastic modelling to improve the resilience and reliability of the integration.Based on the status that the UWB features are limited,a‘two-phase'CNNs structure was designed and implemented:one for signal classification and the other one for measurement noise prediction.The proposed resilient FGO method is tested on flighting UAV platform under actual indoor challenging scenario.Compared to classical FGO method,the overall positioning errors can be decreased from about 0.60 m to centimeter-level under signal block and reflection scenarios.The superiority of resilient FGO which effectively verified in constrained environment is pretty important for positioning accuracy and integrity for indoor navigation task.
基金supported by national natural science foundation of China(No.41274127,41301460,40874066,and 40839905)
文摘We designed the window function of the optimal Gabor transform based on the time-frequency rotation property of the fractional Fourier transform. Thus, we obtained the adaptive optimal Gabor transform in the fractional domain and improved the time-frequency concentration of the Gabor transform. The algorithm first searches for the optimal rotation factor, then performs the p-th FrFT of the signal and, finally, performs time and frequency analysis of the FrFT result. Finally, the algorithm rotates the plane in the fractional domain back to the normal time-frequency plane. This promotes the application of FrFT in the field of high-resolution reservoir prediction. Additionally, we proposed an adaptive search method for the optimal rotation factor using the Parseval principle in the fractional domain, which simplifies the algorithm. We carried out spectrum decomposition of the seismic signal, which showed that the instantaneous frequency slices obtained by the proposed algorithm are superior to the ones obtained by the traditional Gabor transform. The adaptive time frequency analysis is of great significance to seismic signal processing.
基金The authors acknowledge the financial supports from the National Natural Science Foundation of China under grant No.90305005,50135030
文摘Structure health monitoring based on diagnostic Lamb waves has been found to be one of the most promising techniques recently. This paper has a brief review of the new developments on this method including the basic novel of the method, fundamentals and mathematics of Lamb wave propagation, narrowband and wideband Lamb wave excitation methods, optimization of excitation factors and diagnostic Lamb wave interpretation methods.
基金supported in part by the National Natural Science Foundation of China under Grant 61720106003,Grant 61401165,Grant 61379006,Grant 61671144,and Grant 61701538in part by the Natural Science Foundation of Fujian Province under Grants 2015J01262+3 种基金in part by Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University under Grant ZQN-PY407in part by Science and Technology Innovation Teams of Henan Province for Colleges and Universities(17IRTSTHN014)in part by the Scientific and Technological Key Project of Henan Province under Grant 172102210080 and Grant 182102210449in part by the Collaborative Innovation Center for Aviation Economy Development of Henan Province。
文摘In this paper,a novel opportunistic scheduling(OS)scheme with antenna selection(AS)for the energy harvesting(EH)cooperative communication system where the relay can harvest energy from the source transmission is proposed.In this considered scheme,we take into both traditional mathematical analysis and reinforcement learning(RL)scenarios with the power splitting(PS)factor constraint.For the case of traditional mathematical analysis of a fixed-PS factor,we derive an exact closed-form expressions for the ergodic capacity and outage probability in general signal-to-noise ratio(SNR)regime.Then,we combine the optimal PS factor with performance metrics to achieve the optimal transmission performance.Subsequently,based on the optimized PS factor,a RL technique called as Q-learning(QL)algorithm is proposed to derive the optimal antenna selection strategy.To highlight the performance advantage of the proposed QL with training the received SNR at the destination,we also examine the scenario of QL scheme with training channel between the relay and the destination.The results illustrate that,the optimized scheme is always superior to the fixed-PS factor scheme.In addition,a better system parameter setting with QL significantly outperforms the traditional mathematical analysis scheme.
基金financially supported by the National Natural Science Foundation of China(Grant No.51009087)
文摘In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique(SUMT) interior point method of Nonlinear Programming(NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.
基金the Wyoming LTAP Center for supporting this research study
文摘This paper developed a traffic safety management system (TSMS) for improving safety on county paved roads in Wyoming. TSMS is a strategic and systematic process to improve safety of roadway network. When funding is limited, it is important to identify the best combination of safety improvement projects to provide the most benefits to society in terms of crash reduction. The factors included in the proposed optimization model are annual safety budget, roadway inventory, roadway functional classification, historical crashes, safety improvement countermeasures, cost and crash reduction factors (CRFs) associated with safety improvement countermeasures, and average daily traffics (ADTs). This paper demonstrated how the proposed model can identify the best combination of safety improvement projects to maximize the safety benefits in terms of reducing overall crash frequency. Although the proposed methodology was implemented on the county paved road network of Wyoming, it could be easily modified for potential implementation on the Wyoming state highway system. Other states can also benefit by implementing a similar program within their jurisdictions.
基金Supported by the National Science and Technology Support Program(2013BAG12B01)Foundational and Advanced Research Program General Project of Chongqing City(cstc2013jcyjjq60002)
文摘A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range.
基金co-supported by the National Natural Science Foundation of China (No. 61573113)the Harbin Research Foundation for Leaders of Outstanding Disciplines, China (No. 2014RFXXJ074)
文摘This paper is concerned with the adaptive robust cubature Kalman filtering problem for the case that the dynamics model error and the measurement model error exist simultaneously in the satellite attitude estimation system. By using Hubel-based robust filtering methodology to correct the measurement covariance formulation of cubature Kalman filter, the proposed filtering algorithm could effectively suppress the measurement model error. To further enhance this effect and reduce the impact of the dynamics model error, two different adaptively robust filtering algorithms,one with the optimal adaptive factor based on the estimated covariance matrix of the predicted residuals and the other with multiple fading factors based on strong tracking algorithm, are developed and applied for the satellite attitude estimation. The quaternion is employed to represent the global attitude parameter, and three-dimensional generalized Rodrigues parameters are introduced to define the local attitude error. A multiplicative quaternion error is derived from the local attitude error to maintain quaternion normalization constraint in the filter. Simulation results indicate that the proposed novel algorithm could exhibit higher accuracy and faster convergence compared with the multiplicative extended Kalman filter, the unscented quaternion estimator, and the adaptive robust unscented Kalman filter.
基金This work was financially supported by the grant from the International Cooperation and Exchange of the National Natural Science Foundation of China(No.31811540396),Chinathe National Natural Science Foundation of China(No.31701318),Chinathe Training Project of Heilongjiang Bayi Agricultural University,China(No.XZR2016-09).
文摘The change in the maize moisture content during different growth stages is an important indicator to evaluate the growth status of maize.In particular,the moisture content during the grain-filling stage reflects the grain quality and maturity and it can also be used as an important indicator for breeding and seed selection.At present,the drying method is usually used to calculate the moisture content and the dehydration rate at the grain-filling stage,however,it requires large sample size and long test time.In order to monitor the change in the moisture content at the maize grain-filling stage using small sample set,the Bootstrap re-sampling strategy-sample set partitioning based on joint x-y distances-partial least squares(Bootstrap-SPXY-PLS)moisture content monitoring model and near-infrared spectroscopy for small sample sizes of 10,20,and 50 were used.To improve the prediction accuracy of the model,the optimal number of factors of the model was determined and the comprehensive evaluation thresholds RVP(coefficient of determination(R^(2)),the root mean square error of cross-validation(RMSECV)and the root mean square error of prediction(RMSEP))was proposed for sub-model screening.The model exhibited a good performance for predicting the moisture content of the maize grain at the filling stage for small sample set.For the sample sizes of 20 and 50,the R^(2) values were greater than 0.99.The average deviations of the predicted and reference values of the model were 0.1078%,0.057%,and 0.0918%,respectively.Therefore,the model was effective for monitoring the moisture content at the grain-filling stage for a small sample size.The method is also suitable for the quantitative analysis of different concentrations using near-infrared spectroscopy and small sample size.