According to the variable toe-to-heel well spacing, combined with the dislocation theory, discrete lattice method, and finite-element-method(FEM) based fluid-solid coupling, an integrated geological-engineering method...According to the variable toe-to-heel well spacing, combined with the dislocation theory, discrete lattice method, and finite-element-method(FEM) based fluid-solid coupling, an integrated geological-engineering method of volume fracturing for fan-shaped well pattern is proposed considering the geomechanical modeling, induced stress calculation, hydraulic fracturing simulation, and post-frac productivity evaluation. Besides, we propose the differential fracturing design for the conventional productivity-area and the potential production area for fan-shaped horizontal wells. After the fracturing of the conventional production area for H1 fan-shaped well platform, the research shows that the maximum reduction of the horizontal principal stress difference in the potential productivity-area is 0.2 MPa, which cannot cause the stress reversal, but this reduction is still conducive to the lateral propagation of hydraulic fractures. According to the optimized fracturing design, in zone-Ⅰ of the potential production area, only Well 2 is fractured, with a cluster spacing of 30 m and an injection rate of 12 m^(3)/min per stage;in zone-Ⅱ, Well 2 is fractured before Well 3, with a cluster spacing of 30 m and an injection rate of 12 m^(3)/min per stage. The swept area of the pore pressure drop in the potential production area is small, showing that the reservoir is not well developed. The hydraulic fracturing in the toe area can be improved by, for example, properly densifying the fractures and adjusting the fracture distribution, in order to enhance the swept volume and increase the reservoir utilization.展开更多
The use of asbestos material is being avoided to manufacture the brake pads as it is harmful and toxic in nature. Further it leads to various health issues like asbestosis, mesothelioma and lung cancers. These brake p...The use of asbestos material is being avoided to manufacture the brake pads as it is harmful and toxic in nature. Further it leads to various health issues like asbestosis, mesothelioma and lung cancers. These brake pads can be replaced by natural fibers like Palm kernel (0-50%), Nile roses (0-15%) and Wheat (0-10%) with additives like aluminum oxide (5%-20%) and graphite powder (10%-35%). Phenolic resin of 35% is utilized as a binder. Particulated Nile roses are used to increase the friction coefficient and wheat powder is used to reduce the wear rate. Aluminum oxide and graphite are abrasive in nature. This helps to make brake pads with high friction co-efficient and less wear rate with low noise pollution. The wear of the proposed composites have been investigated at different speeds. Various tests like wear on pin-ondisc apparatus, hardness on the Rockwell hardness apparatus and oil absorption test have been conducted. Phenolic resin produces good bonding nature to fiber. Thus, Fibers found to have performed palatably among all commercial brake pads. The objective of the research indicates that Palm kernal shell could be a conceivable alternative for asbestos in friction coating materials.展开更多
基金Supported by National Natural Science Foundation of China (52104029,U2139204)PetroChina Science and Technology Innovation Foundation (2021 DQ02-0501)。
文摘According to the variable toe-to-heel well spacing, combined with the dislocation theory, discrete lattice method, and finite-element-method(FEM) based fluid-solid coupling, an integrated geological-engineering method of volume fracturing for fan-shaped well pattern is proposed considering the geomechanical modeling, induced stress calculation, hydraulic fracturing simulation, and post-frac productivity evaluation. Besides, we propose the differential fracturing design for the conventional productivity-area and the potential production area for fan-shaped horizontal wells. After the fracturing of the conventional production area for H1 fan-shaped well platform, the research shows that the maximum reduction of the horizontal principal stress difference in the potential productivity-area is 0.2 MPa, which cannot cause the stress reversal, but this reduction is still conducive to the lateral propagation of hydraulic fractures. According to the optimized fracturing design, in zone-Ⅰ of the potential production area, only Well 2 is fractured, with a cluster spacing of 30 m and an injection rate of 12 m^(3)/min per stage;in zone-Ⅱ, Well 2 is fractured before Well 3, with a cluster spacing of 30 m and an injection rate of 12 m^(3)/min per stage. The swept area of the pore pressure drop in the potential production area is small, showing that the reservoir is not well developed. The hydraulic fracturing in the toe area can be improved by, for example, properly densifying the fractures and adjusting the fracture distribution, in order to enhance the swept volume and increase the reservoir utilization.
文摘The use of asbestos material is being avoided to manufacture the brake pads as it is harmful and toxic in nature. Further it leads to various health issues like asbestosis, mesothelioma and lung cancers. These brake pads can be replaced by natural fibers like Palm kernel (0-50%), Nile roses (0-15%) and Wheat (0-10%) with additives like aluminum oxide (5%-20%) and graphite powder (10%-35%). Phenolic resin of 35% is utilized as a binder. Particulated Nile roses are used to increase the friction coefficient and wheat powder is used to reduce the wear rate. Aluminum oxide and graphite are abrasive in nature. This helps to make brake pads with high friction co-efficient and less wear rate with low noise pollution. The wear of the proposed composites have been investigated at different speeds. Various tests like wear on pin-ondisc apparatus, hardness on the Rockwell hardness apparatus and oil absorption test have been conducted. Phenolic resin produces good bonding nature to fiber. Thus, Fibers found to have performed palatably among all commercial brake pads. The objective of the research indicates that Palm kernal shell could be a conceivable alternative for asbestos in friction coating materials.