Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption ev...Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.展开更多
Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepf...Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac activity.Addressing this gap,many researchers have developed detection methods focusing on biometric characteristics.These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection accuracy.However,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac activity.We introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification network.Additionally,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention mechanisms.Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces.展开更多
This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d...This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.展开更多
Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology refe...Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).展开更多
Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employ...Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.展开更多
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti...Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.展开更多
In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechani...In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform.The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too.In this paper,the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators(IWOP)are used to establish the entanglement fractional Fourier transform theory to the extent of quantum.A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.展开更多
This paper is dedicated to applying the Fourier amplitude sensitivity test(FAST)method to the problem of mixed extension and inflation of a circular cylindrical tube in the presence of residual stresses.The metafuncti...This paper is dedicated to applying the Fourier amplitude sensitivity test(FAST)method to the problem of mixed extension and inflation of a circular cylindrical tube in the presence of residual stresses.The metafunctions and the Ishigami function are considered in the sensitivity analysis(SA).The effects of the input variables on the output variables are investigated,and the most important parameters of the system under the applied pressure and axial force such as the axial stretch and the azimuthal stretch are determined.展开更多
This paper introduces an efficient image cryptography system.The pro-posed image cryptography system is based on employing the two-dimensional(2D)chaotic henon map(CHM)in the Discrete Fourier Transform(DFT).The propos...This paper introduces an efficient image cryptography system.The pro-posed image cryptography system is based on employing the two-dimensional(2D)chaotic henon map(CHM)in the Discrete Fourier Transform(DFT).The proposed DFT-based CHM image cryptography has two procedures which are the encryption and decryption procedures.In the proposed DFT-based CHM image cryptography,the confusion is employed using the CHM while the diffu-sion is realized using the DFT.So,the proposed DFT-based CHM image crypto-graphy achieves both confusion and diffusion characteristics.The encryption procedure starts by applying the DFT on the image then the DFT transformed image is scrambled using the CHM and the inverse DFT is applied to get the final-ly encrypted image.The decryption procedure follows the inverse procedure of encryption.The proposed DFT-based CHM image cryptography system is exam-ined using a set of security tests like statistical tests,entropy tests,differential tests,and sensitivity tests.The obtained results confirm and ensure the superiority of the proposed DFT-based CHM image cryptography system.These outcomes encourage the employment of the proposed DFT-based CHM image cryptography system in real-time image and video applications.展开更多
In low earth orbit (LEO) satellite or missile communication scenarios, signals may experience extremely large Doppler shifts and have short visual time. Thus, direct sequence spread spectrum (DSSS) systems should be a...In low earth orbit (LEO) satellite or missile communication scenarios, signals may experience extremely large Doppler shifts and have short visual time. Thus, direct sequence spread spectrum (DSSS) systems should be able to achieve acquisition in a very short time in spite of large Doppler frequencies. However, the traditional methods cannot solve it well. This work describes a new method that uses a differential decoding technique for Doppler mitigation and a batch process of FFT (fast Fourier transform) and IFFT (invert FFT) for the purpose of parallel code phase search by frequency domain correlation. After the code phase is estimated, another FFT process is carried out to search the Doppler frequency. Since both code phase and Doppler frequency domains are searched in parallel, this architecture can provide acquisition fifty times faster than conventional FFT methods. The performance in terms of the probability of detection and false alarm are also analyzed and simulated, showing that a signal-to-noise ratio (SNR) loss of 3 dB is introduced by the differential decoding. The proposed method is an efficient way to shorten the acquisition time with slightly hardware increasing.展开更多
Cardiac Arrhythmias shows a condition of abnor-mal electrical activity in the heart which is a threat to humans. This paper presents a method to analyze electrocardiogram (ECG) signal, extract the fea-tures, for the c...Cardiac Arrhythmias shows a condition of abnor-mal electrical activity in the heart which is a threat to humans. This paper presents a method to analyze electrocardiogram (ECG) signal, extract the fea-tures, for the classification of heart beats according to different arrhythmias. Data were obtained from 40 records of the MIT-BIH arrhythmia database (only one lead). Cardiac arrhythmias which are found are Tachycardia, Bradycardia, Supraventricular Tachycardia, Incomplete Bundle Branch Block, Bundle Branch Block, Ventricular Tachycardia. A learning dataset for the neural network was obtained from a twenty records set which were manually classified using MIT-BIH Arrhythmia Database Directory and docu- mentation, taking advantage of the professional experience of a cardiologist. Fast Fourier transforms are used to identify the peaks in the ECG signal and then Neural Networks are applied to identify the diseases. Levenberg Marquardt Back-Propagation algorithm is used to train the network. The results obtained have better efficiency then the previously proposed methods.展开更多
A high performance fast-Fourier-transform (FFT) spectrum analyzer, which is developed for measure spin noise spectrums, is presented in this paper. The analyzer is implemented with a field-programmable-gate-arrays (FP...A high performance fast-Fourier-transform (FFT) spectrum analyzer, which is developed for measure spin noise spectrums, is presented in this paper. The analyzer is implemented with a field-programmable-gate-arrays (FPGA) chip for data and command management. An analog-to-digital-convertor chip is integrated for analog signal acquisition. In order to meet the various requirements of measuring different types of spin noise spectrums, multiple operating modes are designed and realized using the reprogrammable FPGA logic resources. The FFT function is fully managed by the programmable resource inside the FPGA chip. A 1 GSa/s sampling rate and a 100 percent data coverage ratio with non-dead-time are obtained. 30534 FFT spectrums can be acquired per second, and the spectrums can be on-board accumulated and averaged. Digital filters, multi-stage reconfigurable data reconstruction modules, and frequency down conversion modules are also implemented in the FPGA to provide flexible real-time data processing capacity, thus the noise floor and signals aliasing can be suppressed effectively. An efficiency comparison between the FPGA-based FFT spectrum analyzer and the software-based FFT is demonstrated, and the high performance FFT spectrum analyzer has a significant advantage in obtaining high resolution spin noise spectrums with enhanced efficiency.展开更多
Classification of electroencephalogram(EEG)signals for humans can be achieved via artificial intelligence(AI)techniques.Especially,the EEG signals associated with seizure epilepsy can be detected to distinguish betwee...Classification of electroencephalogram(EEG)signals for humans can be achieved via artificial intelligence(AI)techniques.Especially,the EEG signals associated with seizure epilepsy can be detected to distinguish between epileptic and non-epileptic regions.From this perspective,an automated AI technique with a digital processing method can be used to improve these signals.This paper proposes two classifiers:long short-term memory(LSTM)and support vector machine(SVM)for the classification of seizure and non-seizure EEG signals.These classifiers are applied to a public dataset,namely the University of Bonn,which consists of 2 classes–seizure and non-seizure.In addition,a fast Walsh-Hadamard Transform(FWHT)technique is implemented to analyze the EEG signals within the recurrence space of the brain.Thus,Hadamard coefficients of the EEG signals are obtained via the FWHT.Moreover,the FWHT is contributed to generate an efficient derivation of seizure EEG recordings from non-seizure EEG recordings.Also,a k-fold cross-validation technique is applied to validate the performance of the proposed classifiers.The LSTM classifier provides the best performance,with a testing accuracy of 99.00%.The training and testing loss rates for the LSTM are 0.0029 and 0.0602,respectively,while the weighted average precision,recall,and F1-score for the LSTM are 99.00%.The results of the SVM classifier in terms of accuracy,sensitivity,and specificity reached 91%,93.52%,and 91.3%,respectively.The computational time consumed for the training of the LSTM and SVM is 2000 and 2500 s,respectively.The results show that the LSTM classifier provides better performance than SVM in the classification of EEG signals.Eventually,the proposed classifiers provide high classification accuracy compared to previously published classifiers.展开更多
This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourie...This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourier transforms(SFT) have compact support using the partial derivatives operator and the Dirac operator of higher order.展开更多
Dominant frequency (DF) of electrophysiological data is an effective approach to estimate the activation rate during Atrial Fibrillation (AF) and it is important to understand the pathophysiology of AF and to help sel...Dominant frequency (DF) of electrophysiological data is an effective approach to estimate the activation rate during Atrial Fibrillation (AF) and it is important to understand the pathophysiology of AF and to help select candidate sites for ablation. Frequency analysis is used to find and track DF. It is important to minimize the catheter insertion time in the atria as it contributes to the risk for the patients during this procedure, so DF estimation needs to be obtained as quickly as possible. A comparison of computation tim- es taken for spectrum estimation analysis is presented in this paper. Fast Fourier Transform (FFT), Blackman-Tukey (BT), Autoregressive (AR) and Multiple Signal Classification (MUSIC) methods are used to obtain the frequency spectrum of the signals. The time to produce DF was measured for each method. The method which takes the shortest time for analysis is selected for real time application purpose.展开更多
基金supported by the grants of National Natural Science Foundation of China(42374219,42127804)the Qilu Young Researcher Project of Shandong University.
文摘Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.
基金supported by the National Nature Science Foundation of China(Grant Number:61962010).
文摘Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac activity.Addressing this gap,many researchers have developed detection methods focusing on biometric characteristics.These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection accuracy.However,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac activity.We introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification network.Additionally,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention mechanisms.Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces.
文摘This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.
文摘Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).
基金supported by the National Natural Science Foundation of China(61801503).
文摘Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.
文摘Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.
基金Project supported by the National Natural Science Foundation of China(Grant No.11775208)the Foundation for Young Talents at the College of Anhui Province,China(Grant Nos.gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.KJ2020A0638 and 2022AH051586)。
文摘In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform.The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too.In this paper,the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators(IWOP)are used to establish the entanglement fractional Fourier transform theory to the extent of quantum.A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.
文摘This paper is dedicated to applying the Fourier amplitude sensitivity test(FAST)method to the problem of mixed extension and inflation of a circular cylindrical tube in the presence of residual stresses.The metafunctions and the Ishigami function are considered in the sensitivity analysis(SA).The effects of the input variables on the output variables are investigated,and the most important parameters of the system under the applied pressure and axial force such as the axial stretch and the azimuthal stretch are determined.
基金This research was funded by Deanship of Scientific Research,Taif University Researches Supporting Project number(TURSP-2020/216),Taif University,Taif,Saudi Arabia.
文摘This paper introduces an efficient image cryptography system.The pro-posed image cryptography system is based on employing the two-dimensional(2D)chaotic henon map(CHM)in the Discrete Fourier Transform(DFT).The proposed DFT-based CHM image cryptography has two procedures which are the encryption and decryption procedures.In the proposed DFT-based CHM image cryptography,the confusion is employed using the CHM while the diffu-sion is realized using the DFT.So,the proposed DFT-based CHM image crypto-graphy achieves both confusion and diffusion characteristics.The encryption procedure starts by applying the DFT on the image then the DFT transformed image is scrambled using the CHM and the inverse DFT is applied to get the final-ly encrypted image.The decryption procedure follows the inverse procedure of encryption.The proposed DFT-based CHM image cryptography system is exam-ined using a set of security tests like statistical tests,entropy tests,differential tests,and sensitivity tests.The obtained results confirm and ensure the superiority of the proposed DFT-based CHM image cryptography system.These outcomes encourage the employment of the proposed DFT-based CHM image cryptography system in real-time image and video applications.
基金Project(60904090) supported by the National Natural Science Foundation of China
文摘In low earth orbit (LEO) satellite or missile communication scenarios, signals may experience extremely large Doppler shifts and have short visual time. Thus, direct sequence spread spectrum (DSSS) systems should be able to achieve acquisition in a very short time in spite of large Doppler frequencies. However, the traditional methods cannot solve it well. This work describes a new method that uses a differential decoding technique for Doppler mitigation and a batch process of FFT (fast Fourier transform) and IFFT (invert FFT) for the purpose of parallel code phase search by frequency domain correlation. After the code phase is estimated, another FFT process is carried out to search the Doppler frequency. Since both code phase and Doppler frequency domains are searched in parallel, this architecture can provide acquisition fifty times faster than conventional FFT methods. The performance in terms of the probability of detection and false alarm are also analyzed and simulated, showing that a signal-to-noise ratio (SNR) loss of 3 dB is introduced by the differential decoding. The proposed method is an efficient way to shorten the acquisition time with slightly hardware increasing.
文摘Cardiac Arrhythmias shows a condition of abnor-mal electrical activity in the heart which is a threat to humans. This paper presents a method to analyze electrocardiogram (ECG) signal, extract the fea-tures, for the classification of heart beats according to different arrhythmias. Data were obtained from 40 records of the MIT-BIH arrhythmia database (only one lead). Cardiac arrhythmias which are found are Tachycardia, Bradycardia, Supraventricular Tachycardia, Incomplete Bundle Branch Block, Bundle Branch Block, Ventricular Tachycardia. A learning dataset for the neural network was obtained from a twenty records set which were manually classified using MIT-BIH Arrhythmia Database Directory and docu- mentation, taking advantage of the professional experience of a cardiologist. Fast Fourier transforms are used to identify the peaks in the ECG signal and then Neural Networks are applied to identify the diseases. Levenberg Marquardt Back-Propagation algorithm is used to train the network. The results obtained have better efficiency then the previously proposed methods.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDC07020200)the National Key R&D Program of China(Grant Nos.2018YFA0306600 and 2016YFB0501603)+3 种基金the National Natural Science Foundation of China(Grant No.11927811)the Chinese Academy of Sciences(Grants Nos.GJJSTD20170001 and QYZDY-SSW-SLH004)Anhui Initiative in Quantum Information Technologies,China(Grant No.AHY050000)the Fundamental Research Funds for the Central Universities,China.
文摘A high performance fast-Fourier-transform (FFT) spectrum analyzer, which is developed for measure spin noise spectrums, is presented in this paper. The analyzer is implemented with a field-programmable-gate-arrays (FPGA) chip for data and command management. An analog-to-digital-convertor chip is integrated for analog signal acquisition. In order to meet the various requirements of measuring different types of spin noise spectrums, multiple operating modes are designed and realized using the reprogrammable FPGA logic resources. The FFT function is fully managed by the programmable resource inside the FPGA chip. A 1 GSa/s sampling rate and a 100 percent data coverage ratio with non-dead-time are obtained. 30534 FFT spectrums can be acquired per second, and the spectrums can be on-board accumulated and averaged. Digital filters, multi-stage reconfigurable data reconstruction modules, and frequency down conversion modules are also implemented in the FPGA to provide flexible real-time data processing capacity, thus the noise floor and signals aliasing can be suppressed effectively. An efficiency comparison between the FPGA-based FFT spectrum analyzer and the software-based FFT is demonstrated, and the high performance FFT spectrum analyzer has a significant advantage in obtaining high resolution spin noise spectrums with enhanced efficiency.
基金The authors would like to thank the support of the Taif University Researchers Supporting Project TURSP 2020/34,Taif University,Taif Saudi Arabia for supporting this work.
文摘Classification of electroencephalogram(EEG)signals for humans can be achieved via artificial intelligence(AI)techniques.Especially,the EEG signals associated with seizure epilepsy can be detected to distinguish between epileptic and non-epileptic regions.From this perspective,an automated AI technique with a digital processing method can be used to improve these signals.This paper proposes two classifiers:long short-term memory(LSTM)and support vector machine(SVM)for the classification of seizure and non-seizure EEG signals.These classifiers are applied to a public dataset,namely the University of Bonn,which consists of 2 classes–seizure and non-seizure.In addition,a fast Walsh-Hadamard Transform(FWHT)technique is implemented to analyze the EEG signals within the recurrence space of the brain.Thus,Hadamard coefficients of the EEG signals are obtained via the FWHT.Moreover,the FWHT is contributed to generate an efficient derivation of seizure EEG recordings from non-seizure EEG recordings.Also,a k-fold cross-validation technique is applied to validate the performance of the proposed classifiers.The LSTM classifier provides the best performance,with a testing accuracy of 99.00%.The training and testing loss rates for the LSTM are 0.0029 and 0.0602,respectively,while the weighted average precision,recall,and F1-score for the LSTM are 99.00%.The results of the SVM classifier in terms of accuracy,sensitivity,and specificity reached 91%,93.52%,and 91.3%,respectively.The computational time consumed for the training of the LSTM and SVM is 2000 and 2500 s,respectively.The results show that the LSTM classifier provides better performance than SVM in the classification of EEG signals.Eventually,the proposed classifiers provide high classification accuracy compared to previously published classifiers.
基金supported by the Deanship of Scientific Research at King Khalid University,Saudi Arabia (R.G.P.1/207/43)。
文摘This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourier transforms(SFT) have compact support using the partial derivatives operator and the Dirac operator of higher order.
文摘Dominant frequency (DF) of electrophysiological data is an effective approach to estimate the activation rate during Atrial Fibrillation (AF) and it is important to understand the pathophysiology of AF and to help select candidate sites for ablation. Frequency analysis is used to find and track DF. It is important to minimize the catheter insertion time in the atria as it contributes to the risk for the patients during this procedure, so DF estimation needs to be obtained as quickly as possible. A comparison of computation tim- es taken for spectrum estimation analysis is presented in this paper. Fast Fourier Transform (FFT), Blackman-Tukey (BT), Autoregressive (AR) and Multiple Signal Classification (MUSIC) methods are used to obtain the frequency spectrum of the signals. The time to produce DF was measured for each method. The method which takes the shortest time for analysis is selected for real time application purpose.