The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The ef...The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The effects of solution pH,initial concentration of Pb2+ions,contact time,and temperature on the amount of Pb2+adsorbed were investigated.Adsorption isotherms,adsorption kinetics,and thermodynamic analysis were also studied.The results showed that the maximum adsorption capacity of the Fe3O4@SiO2@DMSA composite is 50.5 mg/g at 298 K,which is higher than that of Fe3O4 and Fe3O4@SiO2 magnetic nanoparticles.The adsorption process agreed well with Langmuir adsorption isotherm models and pseudo second-order kinetics.The thermodynamic analysis revealed that the adsorption was spontaneous,endothermic and energetically driven in nature.展开更多
As BiVO4 is one of the most popular visible-light-responding photocatalysts, it has been widely used for visiblelight-driven water splitting and environmental purification. However, the typical photocatalytic activity...As BiVO4 is one of the most popular visible-light-responding photocatalysts, it has been widely used for visiblelight-driven water splitting and environmental purification. However, the typical photocatalytic activity of unmodified BiVO4 for the degradation of organic pollutants is still not impressive. To address this limitation, we studied Fe2O3-modified porous BiVO4 nanoplates. Compared with unmodified BiVO4, the Fe2O3-modified porous Bi VO4 nanoplates showed significantly enhanced photocatalytic activities in decomposing both dye and colorless pollutant models, such as rhodamine B(Rh B) and phenol,respectively. The pseudo-first-order reaction rate constants for the degradation of RhB and phenol on Fe2O3-modified BiVO4 porous nanoplates are 27 and 31 times larger than that of pristine Bi VO4, respectively. We also found that the Fe2O3 may act as an efficient non-precious metal co-catalyst, which is responsible for the excellent photocatalytic activity of Fe2O3/BiVO4.Graphical Abstract Fe2O3, as a cheap and efficient co-catalyst, could greatly enhance the photocatalytic activity of Bi VO4 porous nanoplates in decomposing organic pollutants.展开更多
Artificial zeolite was modified by nano-Fe3O4 for development of functional adsorbents.Subsequently,adsorbents such as calcium cross-linked nano-Fe3O4 microspheres (Ca-MS),calcium cross-linked nano-Fe3O4 modified zeol...Artificial zeolite was modified by nano-Fe3O4 for development of functional adsorbents.Subsequently,adsorbents such as calcium cross-linked nano-Fe3O4 microspheres (Ca-MS),calcium cross-linked nano-Fe3O4 modified zeolite microspheres (Ca-MZS) and iron cross-linked nano-Fe3O4 modified zeolite microspheres (Fe-MZS) were prepared and compared for their adsorption performance.The effects of adsorbent dosage,solution pH,initial concentration and ion content on the removal of Cu^2+ from wastewater are investigated,and the adsorption kinetics and isotherms for the adsorbent materials were analyzed.The experimental results indicate that for the initial concentration of Cu^2+ of 30 mg/L,the adsorption is noted to be most stable.The optimal initial pH for adsorbing Cu^2+ is observed to be 5.5.At an optimal dosage of Ca-MZS of 900 mg/L,the adsorption capacity is measured to be 28.25 mg/g,along with the removal rate of 72.49%.The addition of Na+ and K+ affects the adsorption of Cu^2+.For the Na^+ and K^+ concentration of 0.2 mmol/L,the Cu^2+ removal rate by Ca-MZS drops to 11.94% and 22.12%,respectively.As compared with the adsorbents such as Natural Zeolite (NZ),Ca-MS and Fe-MZS,Ca-MZS demonstrates the best removal effect in solution,where the removal rate reaches 84.27%,with the maximum adsorption capacity of 28.09 mg/g.The Cu^2+ adsorption kinetics of Ca-MZS is observed to follow the Elovich kinetic model,with the adsorption isotherm data fitting the Freundlich isotherm model by using the non-linear method.展开更多
A bifunctional Co modified Fe3O4-Mn catalyst was prepared for Fischer-Tropsch synthesis (FTS). The influence of Co loading on the synergistic effect of Fe-Co as well as FTS performance over Fe1CoxMn1 catalysts was stu...A bifunctional Co modified Fe3O4-Mn catalyst was prepared for Fischer-Tropsch synthesis (FTS). The influence of Co loading on the synergistic effect of Fe-Co as well as FTS performance over Fe1CoxMn1 catalysts was studied. Incorporation of Co species into the Fe3O4-Mn catalyst promoted the reduction of iron oxides, increasing iron active sites during FTS. Moreover, the adding of Co species enhanced the electron transfer from Fe to Co metal, which strengthened the synergistic effect of Fe-Co, improving the catalytic performance. The Fe1CoxMn1 catalyst with higher Co loading promoted further the hydrogenation ability, favoring the shifting of the product distribution towards shorter hydrocarbons. Under optimized conditions of 280℃, 2.0 MPa and 3000 h-1, the highest yield of liquid fuels was obtained for the Fe1Co1Mn1 catalyst.展开更多
A novel type of Fe3O4 nanoparticles modified glass carbon electrode(Fe3O4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide(nimesulide) were studied on the ...A novel type of Fe3O4 nanoparticles modified glass carbon electrode(Fe3O4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide(nimesulide) were studied on the Fe3O4/GCE.In 0.4mol/L HAc-NaAc buffer solution(pH=5.0),the electrode process of nimesulide was irreversible at bare GCE and Fe3O4/GCE.The Fe3O4/GCE exhibited a remarkable catalytic and enhancement effect on the reduction of nimesulide.The reduction peak potential of nimesulide shifted positively from-0.683 V at bare GCE to-0.625 V at Fe3O4/GCE,and the sensitivity was increased by ca.3 times.Some experimental conditions were optimized.The linear range between the peak current and the concentration of nimesulide was 2.6×10-6 "1.0×10-4mol/L(R=0.993) with a detection limit of 1.3×10-7mol/L.This method has been used to determine the content of nimesulide in medical tablets.The recovery was determined to be 96.9% "101.9% by means of standard addition method.The method is comparable to UV-Vis spectrometry.展开更多
Fe3O4 nanoparticles were prepared by chemistry co-precipitation and the mean crystal size was 17.9 nm measured by XRD. After it had been treated by silane-coupling agents KH570, magnetic micro-spheres dispersed in org...Fe3O4 nanoparticles were prepared by chemistry co-precipitation and the mean crystal size was 17.9 nm measured by XRD. After it had been treated by silane-coupling agents KH570, magnetic micro-spheres dispersed in organic medium glycol were gained and the mean size of Fe3O4 nanopowders was 33.7 nm. So it can be concluded that magnetic micro-sphere is made of a few Fe3O4 crystals. Many factors of modification were researched, such as the time of ball milling, the content of Fe3O4 and the content of KH570. The modification of Fe3O4 is relative to the time of ball milling, but the dominant function is affected by the content of Fe3O4 and KH570. When the content of Fe3O4 is known, there is a suitable content of KH570. Different content of Fe3O4 will make the different suitable content of KH570, but the range of latter is less than former, which is relative to the distribution of KH570 on Fe3O4 surface or in the solution.展开更多
The surface organic modification of Fe3O4 nanoparticles with silane coupling reagent KH570 was studied. The modified and unmodified nanoparticles were characterized by FT-IR, XPS and TEM. The spectra of FT-IR and XPS ...The surface organic modification of Fe3O4 nanoparticles with silane coupling reagent KH570 was studied. The modified and unmodified nanoparticles were characterized by FT-IR, XPS and TEM. The spectra of FT-IR and XPS revealed that KH570 was coated onto the surface of Fe3O4 nanoparticles to get Fe-O- Si bond and an organic coating layer also was formed. Fe3O4 nanoparticles were spheres partly with mean size of 18,8 nm studied by TEM, which was consistent with the result 17.9 nm calculated by Scherrer's equation. KH570 was adsorbed on surface and formed chemistry bond to be steric hindrance repulsion which prevented nanoparticles from reuniting. Then glycol-based Fe3O4 magnetic liquids dispersed stably was gained.展开更多
A Fe modified Na2WO4 compound was synthesized by a solution impregnation method and was ball-milled with MgH2 to constitute a novel MgH2-Fe2O3/Na2WO4 composite. The effects of the Fe2O3/Na2WO4 additive on the hydrogen...A Fe modified Na2WO4 compound was synthesized by a solution impregnation method and was ball-milled with MgH2 to constitute a novel MgH2-Fe2O3/Na2WO4 composite. The effects of the Fe2O3/Na2WO4 additive on the hydrogen storage properties of MgH2 together with the corresponding mechanism were investigated. At 423 K, within the first 200 seconds, the hydrogen absorption amount of MgH2+20 wt% Fe2O3/Na2WO4 was almost 5 times that of pure MgH2. And at 573 K, its total hydrogen desorption amount was 7 times that for pure MgH2. Meanwhile, its onset dehydrogenation temperature was 110 K lower than that of pure MgH2. It was worth noting that the MgH2+20 wt% Fe/Na2WO4 presented the lower dehydrogenation reaction activation energy(Ea) of 35.9 kJ·mol^-1 compared to that of pure MgH2. The active MgWO4, Mg2 FeH6 and MgO formed during the milling process were responsible for the improvement of the hydrogen storage properties for MgH2.展开更多
Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modifi...Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modified by L-dopa or dopamine using sonication method. The analysis of FTIR clearly indicated the formation of Fe-O-C bond. Direct immobilization of trypsin (EC: 3.4.21.4) on Fe3O4 magnetic nanoparticles with L-dopa and dopamine spacer was investigated using glutaraldehyde as a coupling agent. No significant changes in the size and magnetic property of the three kinds of magnetic nanoparticles linked with or without trypsin were observed. The existence of the spacer molecule on magnetic nanoparticles could greatly improve the activity and the storage stability of bound trypsin through increasing the flexibility of enzyme and changing the microenvironment on nanoparticles surface compared to the naked magnetic nanoparticles.展开更多
A composite material(Fe3O4/Coke)using coke supported Fe3O4 magnetic nanoparticles was successfully prepared via an in-situ chemicaloxidation precipitation method and characterized by SEM,XRD,Raman,and FTIR.The resul...A composite material(Fe3O4/Coke)using coke supported Fe3O4 magnetic nanoparticles was successfully prepared via an in-situ chemicaloxidation precipitation method and characterized by SEM,XRD,Raman,and FTIR.The results showed that the Fe3O4 nanoparticles existed steadily on the surface of coke,with better dispersing and smaller particle size.The catalytic ability of Fe3O4/Coke were investigatied by degrading p-nitrophenol(P-NP).The results showed that the apparent rate constant for the P-NP at 1.0 g·L^-1 catalyst,30 mmol·L^-1 H2O2,pH=3.0,30 ℃ and the best ratio of Coke/Fe3O4 0.6,was evaluated to be 0.027 min^-1,the removalrate of CODCr was 75.47%,and the dissolubility of Fe was 2.42 mg·L^-1.Compared with pure Fe3O4,the catalytic ability of Fe3O4/Coke in the presence of H2O2 was greatly enhanced.And Fe3O4/Coke was a green and environmentalcatalyst with high catalytic activity,showing a good chemicalstability and reusability.展开更多
基金Project(2013DFA51290)supported by International S&T Cooperation Program of China
文摘The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The effects of solution pH,initial concentration of Pb2+ions,contact time,and temperature on the amount of Pb2+adsorbed were investigated.Adsorption isotherms,adsorption kinetics,and thermodynamic analysis were also studied.The results showed that the maximum adsorption capacity of the Fe3O4@SiO2@DMSA composite is 50.5 mg/g at 298 K,which is higher than that of Fe3O4 and Fe3O4@SiO2 magnetic nanoparticles.The adsorption process agreed well with Langmuir adsorption isotherm models and pseudo second-order kinetics.The thermodynamic analysis revealed that the adsorption was spontaneous,endothermic and energetically driven in nature.
基金partial financial support from NSFC(51372173,51002107,and21173159)NSFC for Distinguished Young Scholars(51025207)+3 种基金Research Climb Plan of ZJED(pd2013383)Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure(SKL201409SIC)Xinmiao talent project of Zhejiang Province(2013R424060)College Students Research Project of Wenzhou University(14xk193)
文摘As BiVO4 is one of the most popular visible-light-responding photocatalysts, it has been widely used for visiblelight-driven water splitting and environmental purification. However, the typical photocatalytic activity of unmodified BiVO4 for the degradation of organic pollutants is still not impressive. To address this limitation, we studied Fe2O3-modified porous BiVO4 nanoplates. Compared with unmodified BiVO4, the Fe2O3-modified porous Bi VO4 nanoplates showed significantly enhanced photocatalytic activities in decomposing both dye and colorless pollutant models, such as rhodamine B(Rh B) and phenol,respectively. The pseudo-first-order reaction rate constants for the degradation of RhB and phenol on Fe2O3-modified BiVO4 porous nanoplates are 27 and 31 times larger than that of pristine Bi VO4, respectively. We also found that the Fe2O3 may act as an efficient non-precious metal co-catalyst, which is responsible for the excellent photocatalytic activity of Fe2O3/BiVO4.Graphical Abstract Fe2O3, as a cheap and efficient co-catalyst, could greatly enhance the photocatalytic activity of Bi VO4 porous nanoplates in decomposing organic pollutants.
基金Funded by the Science Foundation of Hubei Province of China(2015CFB706)。
文摘Artificial zeolite was modified by nano-Fe3O4 for development of functional adsorbents.Subsequently,adsorbents such as calcium cross-linked nano-Fe3O4 microspheres (Ca-MS),calcium cross-linked nano-Fe3O4 modified zeolite microspheres (Ca-MZS) and iron cross-linked nano-Fe3O4 modified zeolite microspheres (Fe-MZS) were prepared and compared for their adsorption performance.The effects of adsorbent dosage,solution pH,initial concentration and ion content on the removal of Cu^2+ from wastewater are investigated,and the adsorption kinetics and isotherms for the adsorbent materials were analyzed.The experimental results indicate that for the initial concentration of Cu^2+ of 30 mg/L,the adsorption is noted to be most stable.The optimal initial pH for adsorbing Cu^2+ is observed to be 5.5.At an optimal dosage of Ca-MZS of 900 mg/L,the adsorption capacity is measured to be 28.25 mg/g,along with the removal rate of 72.49%.The addition of Na+ and K+ affects the adsorption of Cu^2+.For the Na^+ and K^+ concentration of 0.2 mmol/L,the Cu^2+ removal rate by Ca-MZS drops to 11.94% and 22.12%,respectively.As compared with the adsorbents such as Natural Zeolite (NZ),Ca-MS and Fe-MZS,Ca-MZS demonstrates the best removal effect in solution,where the removal rate reaches 84.27%,with the maximum adsorption capacity of 28.09 mg/g.The Cu^2+ adsorption kinetics of Ca-MZS is observed to follow the Elovich kinetic model,with the adsorption isotherm data fitting the Freundlich isotherm model by using the non-linear method.
基金supported by International Cooperation and Exchange Program of the National Natural Science Foundation of China(No.51861145102)Science and Technology Program of Shenzhen(No.JCYJ20180302153928437)Fundamental Research Fund for the Central Universities(No.2042019kf0221)
文摘A bifunctional Co modified Fe3O4-Mn catalyst was prepared for Fischer-Tropsch synthesis (FTS). The influence of Co loading on the synergistic effect of Fe-Co as well as FTS performance over Fe1CoxMn1 catalysts was studied. Incorporation of Co species into the Fe3O4-Mn catalyst promoted the reduction of iron oxides, increasing iron active sites during FTS. Moreover, the adding of Co species enhanced the electron transfer from Fe to Co metal, which strengthened the synergistic effect of Fe-Co, improving the catalytic performance. The Fe1CoxMn1 catalyst with higher Co loading promoted further the hydrogenation ability, favoring the shifting of the product distribution towards shorter hydrocarbons. Under optimized conditions of 280℃, 2.0 MPa and 3000 h-1, the highest yield of liquid fuels was obtained for the Fe1Co1Mn1 catalyst.
基金Supported by the National Natural Science Foundation of China(No.21065001)the Natural Science Foundation of Guangxi Province,China(Nos.0639025,0991084)+2 种基金the Support Program for 100 Young and Middle-aged Disciplinary Leaders in Higher Education Institutions of Guangxi Province,China(No.RC20060703005)the Project of Key Laboratory of Development and Application of Forest Chemicals of Guangxi Province,China(No.GXFC08-06)the Fund of Education Department of Guangxi Province,China(No.200812MS074)
文摘A novel type of Fe3O4 nanoparticles modified glass carbon electrode(Fe3O4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide(nimesulide) were studied on the Fe3O4/GCE.In 0.4mol/L HAc-NaAc buffer solution(pH=5.0),the electrode process of nimesulide was irreversible at bare GCE and Fe3O4/GCE.The Fe3O4/GCE exhibited a remarkable catalytic and enhancement effect on the reduction of nimesulide.The reduction peak potential of nimesulide shifted positively from-0.683 V at bare GCE to-0.625 V at Fe3O4/GCE,and the sensitivity was increased by ca.3 times.Some experimental conditions were optimized.The linear range between the peak current and the concentration of nimesulide was 2.6×10-6 "1.0×10-4mol/L(R=0.993) with a detection limit of 1.3×10-7mol/L.This method has been used to determine the content of nimesulide in medical tablets.The recovery was determined to be 96.9% "101.9% by means of standard addition method.The method is comparable to UV-Vis spectrometry.
基金This work was financially supported by the Graduate Innovation Plan Projects of Jiangsu Province in 2005.
文摘Fe3O4 nanoparticles were prepared by chemistry co-precipitation and the mean crystal size was 17.9 nm measured by XRD. After it had been treated by silane-coupling agents KH570, magnetic micro-spheres dispersed in organic medium glycol were gained and the mean size of Fe3O4 nanopowders was 33.7 nm. So it can be concluded that magnetic micro-sphere is made of a few Fe3O4 crystals. Many factors of modification were researched, such as the time of ball milling, the content of Fe3O4 and the content of KH570. The modification of Fe3O4 is relative to the time of ball milling, but the dominant function is affected by the content of Fe3O4 and KH570. When the content of Fe3O4 is known, there is a suitable content of KH570. Different content of Fe3O4 will make the different suitable content of KH570, but the range of latter is less than former, which is relative to the distribution of KH570 on Fe3O4 surface or in the solution.
基金the Natural Science Fund of Jiangsu province (No.BK2007586)Jiangsu Planned Projects(No.0701012B)for Postdoctoral Research Funds
文摘The surface organic modification of Fe3O4 nanoparticles with silane coupling reagent KH570 was studied. The modified and unmodified nanoparticles were characterized by FT-IR, XPS and TEM. The spectra of FT-IR and XPS revealed that KH570 was coated onto the surface of Fe3O4 nanoparticles to get Fe-O- Si bond and an organic coating layer also was formed. Fe3O4 nanoparticles were spheres partly with mean size of 18,8 nm studied by TEM, which was consistent with the result 17.9 nm calculated by Scherrer's equation. KH570 was adsorbed on surface and formed chemistry bond to be steric hindrance repulsion which prevented nanoparticles from reuniting. Then glycol-based Fe3O4 magnetic liquids dispersed stably was gained.
基金Funded by the National Natural Science Foundation of China(No.51771164)Scientific Research Projects in Colleges and Universities in Hebei Province,China(No.ZD2019307)+2 种基金the Fundamental Research Funds for the Central Universities(No.3142019013)the Natural Science Foundation of Hebei Province of China(No.E2019508214)the Program for Top-notch Young Talents in University of Hebei Province(No.BJ2016043)
文摘A Fe modified Na2WO4 compound was synthesized by a solution impregnation method and was ball-milled with MgH2 to constitute a novel MgH2-Fe2O3/Na2WO4 composite. The effects of the Fe2O3/Na2WO4 additive on the hydrogen storage properties of MgH2 together with the corresponding mechanism were investigated. At 423 K, within the first 200 seconds, the hydrogen absorption amount of MgH2+20 wt% Fe2O3/Na2WO4 was almost 5 times that of pure MgH2. And at 573 K, its total hydrogen desorption amount was 7 times that for pure MgH2. Meanwhile, its onset dehydrogenation temperature was 110 K lower than that of pure MgH2. It was worth noting that the MgH2+20 wt% Fe/Na2WO4 presented the lower dehydrogenation reaction activation energy(Ea) of 35.9 kJ·mol^-1 compared to that of pure MgH2. The active MgWO4, Mg2 FeH6 and MgO formed during the milling process were responsible for the improvement of the hydrogen storage properties for MgH2.
基金the Key Technologies R&D Program of Hubei Province(No.2005AA301B14)
文摘Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modified by L-dopa or dopamine using sonication method. The analysis of FTIR clearly indicated the formation of Fe-O-C bond. Direct immobilization of trypsin (EC: 3.4.21.4) on Fe3O4 magnetic nanoparticles with L-dopa and dopamine spacer was investigated using glutaraldehyde as a coupling agent. No significant changes in the size and magnetic property of the three kinds of magnetic nanoparticles linked with or without trypsin were observed. The existence of the spacer molecule on magnetic nanoparticles could greatly improve the activity and the storage stability of bound trypsin through increasing the flexibility of enzyme and changing the microenvironment on nanoparticles surface compared to the naked magnetic nanoparticles.
基金Funded by the Specialized Research Fund for Doctoral Program of Higher Education of China(No.20114219110002)the Educational Department of Hubei Province of China(No.D20131107)the Natural Science Fundation of Hubei Provice(No.2014CFB810)
文摘A composite material(Fe3O4/Coke)using coke supported Fe3O4 magnetic nanoparticles was successfully prepared via an in-situ chemicaloxidation precipitation method and characterized by SEM,XRD,Raman,and FTIR.The results showed that the Fe3O4 nanoparticles existed steadily on the surface of coke,with better dispersing and smaller particle size.The catalytic ability of Fe3O4/Coke were investigatied by degrading p-nitrophenol(P-NP).The results showed that the apparent rate constant for the P-NP at 1.0 g·L^-1 catalyst,30 mmol·L^-1 H2O2,pH=3.0,30 ℃ and the best ratio of Coke/Fe3O4 0.6,was evaluated to be 0.027 min^-1,the removalrate of CODCr was 75.47%,and the dissolubility of Fe was 2.42 mg·L^-1.Compared with pure Fe3O4,the catalytic ability of Fe3O4/Coke in the presence of H2O2 was greatly enhanced.And Fe3O4/Coke was a green and environmentalcatalyst with high catalytic activity,showing a good chemicalstability and reusability.