期刊文献+
共找到4,960篇文章
< 1 2 248 >
每页显示 20 50 100
DMHFR:Decoder with Multi-Head Feature Receptors for Tract Image Segmentation
1
作者 Jianuo Huang Bohan Lai +2 位作者 Weiye Qiu Caixu Xu Jie He 《Computers, Materials & Continua》 2025年第3期4841-4862,共22页
The self-attention mechanism of Transformers,which captures long-range contextual information,has demonstrated significant potential in image segmentation.However,their ability to learn local,contextual relationships ... The self-attention mechanism of Transformers,which captures long-range contextual information,has demonstrated significant potential in image segmentation.However,their ability to learn local,contextual relationships between pixels requires further improvement.Previous methods face challenges in efficiently managing multi-scale fea-tures of different granularities from the encoder backbone,leaving room for improvement in their global representation and feature extraction capabilities.To address these challenges,we propose a novel Decoder with Multi-Head Feature Receptors(DMHFR),which receives multi-scale features from the encoder backbone and organizes them into three feature groups with different granularities:coarse,fine-grained,and full set.These groups are subsequently processed by Multi-Head Feature Receptors(MHFRs)after feature capture and modeling operations.MHFRs include two Three-Head Feature Receptors(THFRs)and one Four-Head Feature Receptor(FHFR).Each group of features is passed through these MHFRs and then fed into axial transformers,which help the model capture long-range dependencies within the features.The three MHFRs produce three distinct feature outputs.The output from the FHFR serves as auxiliary auxiliary features in the prediction head,and the prediction output and their losses will eventually be aggregated.Experimental results show that the Transformer using DMHFR outperforms 15 state of the arts(SOTA)methods on five public datasets.Specifically,it achieved significant improvements in mean DICE scores over the classic Parallel Reverse Attention Network(PraNet)method,with gains of 4.1%,2.2%,1.4%,8.9%,and 16.3%on the CVC-ClinicDB,Kvasir-SEG,CVC-T,CVC-ColonDB,and ETIS-LaribPolypDB datasets,respectively. 展开更多
关键词 Medical image segmentation feature exploration feature aggregation deep learning multi-head feature receptor
下载PDF
AMSFuse:Adaptive Multi-Scale Feature Fusion Network for Diabetic Retinopathy Classification
2
作者 Chengzhang Zhu Ahmed Alasri +5 位作者 Tao Xu Yalong Xiao Abdulrahman Noman Raeed Alsabri Xuanchu Duan Monir Abdullah 《Computers, Materials & Continua》 2025年第3期5153-5167,共15页
Globally,diabetic retinopathy(DR)is the primary cause of blindness,affecting millions of people worldwide.This widespread impact underscores the critical need for reliable and precise diagnostic techniques to ensure p... Globally,diabetic retinopathy(DR)is the primary cause of blindness,affecting millions of people worldwide.This widespread impact underscores the critical need for reliable and precise diagnostic techniques to ensure prompt diagnosis and effective treatment.Deep learning-based automated diagnosis for diabetic retinopathy can facilitate early detection and treatment.However,traditional deep learning models that focus on local views often learn feature representations that are less discriminative at the semantic level.On the other hand,models that focus on global semantic-level information might overlook critical,subtle local pathological features.To address this issue,we propose an adaptive multi-scale feature fusion network called(AMSFuse),which can adaptively combine multi-scale global and local features without compromising their individual representation.Specifically,our model incorporates global features for extracting high-level contextual information from retinal images.Concurrently,local features capture fine-grained details,such as microaneurysms,hemorrhages,and exudates,which are critical for DR diagnosis.These global and local features are adaptively fused using a fusion block,followed by an Integrated Attention Mechanism(IAM)that refines the fused features by emphasizing relevant regions,thereby enhancing classification accuracy for DR classification.Our model achieves 86.3%accuracy on the APTOS dataset and 96.6%RFMiD,both of which are comparable to state-of-the-art methods. 展开更多
关键词 Diabetic retinopathy multi-scale feature fusion global features local features integrated attention mechanism retinal images
下载PDF
Hyperspectral Image Super-Resolution Based on Spatial-Spectral-Frequency Multidimensional Features
3
作者 Sifan Zheng Tao Zhang +3 位作者 Haibing Yin Hao Hu Jian Jiang Chenggang Yan 《Journal of Beijing Institute of Technology》 2025年第1期28-41,共14页
Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vi... Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vision, attracting the attention of many researchers. However, most HSI SR methods focus on the tradeoff between spatial resolution and spectral information, and cannot guarantee the efficient extraction of image information. In this paper, a multidimensional features network(MFNet) for HSI SR is proposed, which simultaneously learns and fuses the spatial,spectral, and frequency multidimensional features of HSI. Spatial features contain rich local details,spectral features contain the information and correlation between spectral bands, and frequency feature can reflect the global information of the image and can be used to obtain the global context of HSI. The fusion of the three features can better guide image super-resolution, to obtain higher-quality high-resolution hyperspectral images. In MFNet, we use the frequency feature extraction module(FFEM) to extract the frequency feature. On this basis, a multidimensional features extraction module(MFEM) is designed to learn and fuse multidimensional features. In addition, experimental results on two public datasets demonstrate that MFNet achieves state-of-the-art performance. 展开更多
关键词 deep neural network hyperspectral image spatial feature spectral information frequency feature
下载PDF
Block-gram:Mining knowledgeable features for efficiently smart contract vulnerability detection
4
作者 Xueshuo Xie Haolong Wang +3 位作者 Zhaolong Jian Yaozheng Fang Zichun Wang Tao Li 《Digital Communications and Networks》 2025年第1期1-12,共12页
Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on Ethereum.Effective vulnerability detection of large-scale smart contracts is critical,as attack... Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on Ethereum.Effective vulnerability detection of large-scale smart contracts is critical,as attacks on smart contracts often cause huge economic losses.Since it is difficult to repair and update smart contracts,it is necessary to find the vulnerabilities before they are deployed.However,code analysis,which requires traversal paths,and learning methods,which require many features to be trained,are too time-consuming to detect large-scale on-chain contracts.Learning-based methods will obtain detection models from a feature space compared to code analysis methods such as symbol execution.But the existing features lack the interpretability of the detection results and training model,even worse,the large-scale feature space also affects the efficiency of detection.This paper focuses on improving the detection efficiency by reducing the dimension of the features,combined with expert knowledge.In this paper,a feature extraction model Block-gram is proposed to form low-dimensional knowledge-based features from bytecode.First,the metadata is separated and the runtime code is converted into a sequence of opcodes,which are divided into segments based on some instructions(jumps,etc.).Then,scalable Block-gram features,including 4-dimensional block features and 8-dimensional attribute features,are mined for the learning-based model training.Finally,feature contributions are calculated from SHAP values to measure the relationship between our features and the results of the detection model.In addition,six types of vulnerability labels are made on a dataset containing 33,885 contracts,and these knowledge-based features are evaluated using seven state-of-the-art learning algorithms,which show that the average detection latency speeds up 25×to 650×,compared with the features extracted by N-gram,and also can enhance the interpretability of the detection model. 展开更多
关键词 Smart contract Bytecode&opcode Knowledgeable features Vulnerability detection feature contribution
下载PDF
Efficient Reconstruction of Spatial Features for Remote Sensing Image-Text Retrieval
5
作者 ZHANG Weihang CHEN Jialiang +3 位作者 ZHANG Wenkai LI Xinming GAO Xin SUN Xian 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期101-111,共11页
Remote sensing cross-modal image-text retrieval(RSCIR)can flexibly and subjectively retrieve remote sensing images utilizing query text,which has received more researchers’attention recently.However,with the increasi... Remote sensing cross-modal image-text retrieval(RSCIR)can flexibly and subjectively retrieve remote sensing images utilizing query text,which has received more researchers’attention recently.However,with the increasing volume of visual-language pre-training model parameters,direct transfer learning consumes a substantial amount of computational and storage resources.Moreover,recently proposed parameter-efficient transfer learning methods mainly focus on the reconstruction of channel features,ignoring the spatial features which are vital for modeling key entity relationships.To address these issues,we design an efficient transfer learning framework for RSCIR,which is based on spatial feature efficient reconstruction(SPER).A concise and efficient spatial adapter is introduced to enhance the extraction of spatial relationships.The spatial adapter is able to spatially reconstruct the features in the backbone with few parameters while incorporating the prior information from the channel dimension.We conduct quantitative and qualitative experiments on two different commonly used RSCIR datasets.Compared with traditional methods,our approach achieves an improvement of 3%-11% in sumR metric.Compared with methods finetuning all parameters,our proposed method only trains less than 1% of the parameters,while maintaining an overall performance of about 96%. 展开更多
关键词 remote sensing cross-modal image-text retrieval(RSCIR) spatial features channel features contrastive learning parameter effective transfer learning
下载PDF
Research on Constructing Personalized Learner Profiles Based on Multi-Feature Fusion
6
作者 Xing Pan Meixiu Lu 《Journal of Electronic Research and Application》 2025年第2期274-284,共11页
This study proposes a learner profile framework based on multi-feature fusion,aiming to enhance the precision of personalized learning recommendations by integrating learners’static attributes(e.g.,demographic data a... This study proposes a learner profile framework based on multi-feature fusion,aiming to enhance the precision of personalized learning recommendations by integrating learners’static attributes(e.g.,demographic data and historical academic performance)with dynamic behavioral patterns(e.g.,real-time interactions and evolving interests over time).The research employs Term Frequency-Inverse Document Frequency(TF-IDF)for semantic feature extraction,integrates the Analytic Hierarchy Process(AHP)for feature weighting,and introduces a time decay function inspired by Newton’s law of cooling to dynamically model changes in learners’interests.Empirical results demonstrate that this framework effectively captures the dynamic evolution of learners’behaviors and provides context-aware learning resource recommendations.The study introduces a novel paradigm for learner modeling in educational technology,combining methodological innovation with a scalable technical architecture,thereby laying a foundation for the development of adaptive learning systems. 展开更多
关键词 Learner profile Multi-feature fusion Dynamic features Personalized recommendation Educational technology
下载PDF
Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing
7
作者 Mohd Anjum Naoufel Kraiem +2 位作者 Hong Min Ashit Kumar Dutta Yousef Ibrahim Daradkeh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期357-384,共28页
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp... Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset. 展开更多
关键词 Computer vision feature selection machine learning region detection texture analysis image classification medical images
下载PDF
Joint Feature Encoding and Task Alignment Mechanism for Emotion-Cause Pair Extraction
8
作者 Shi Li Didi Sun 《Computers, Materials & Continua》 SCIE EI 2025年第1期1069-1086,共18页
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions... With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings. 展开更多
关键词 Emotion-cause pair extraction interactive information enhancement joint feature encoding label consistency task alignment mechanisms
下载PDF
Text-Image Feature Fine-Grained Learning for Joint Multimodal Aspect-Based Sentiment Analysis
9
作者 Tianzhi Zhang Gang Zhou +4 位作者 Shuang Zhang Shunhang Li Yepeng Sun Qiankun Pi Shuo Liu 《Computers, Materials & Continua》 SCIE EI 2025年第1期279-305,共27页
Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimo... Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features.Given this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for JMASA.First,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect terms.Then,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature learning.Thereby,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and enhanced.Experiments on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods. 展开更多
关键词 Multimodal sentiment analysis aspect-based sentiment analysis feature fine-grained learning graph convolutional network adjective-noun pairs
下载PDF
Correction:A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion
10
作者 Khadija Manzoor Fiaz Majeed +5 位作者 Ansar Siddique Talha Meraj Hafiz Tayyab Rauf Mohammed A.El-Meligy Mohamed Sharaf Abd Elatty E.Abd Elgawad 《Computers, Materials & Continua》 SCIE EI 2025年第1期1459-1459,共1页
In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Ela... In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Elatty E.Abd Elgawad Computers,Materials&Continua,2022,Vol.70,No.1,pp.1617–1630.DOI:10.32604/cmc.2022.018621,URL:https://www.techscience.com/cmc/v70n1/44361,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”. 展开更多
关键词 FUSION SKIN feature
下载PDF
A Lightweight Multiscale Feature Fusion Network for Solar Cell Defect Detection
11
作者 Xiaoyun Chen Lanyao Zhang +3 位作者 Xiaoling Chen Yigang Cen Linna Zhang Fugui Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期521-542,共22页
Solar cell defect detection is crucial for quality inspection in photovoltaic power generation modules.In the production process,defect samples occur infrequently and exhibit random shapes and sizes,which makes it cha... Solar cell defect detection is crucial for quality inspection in photovoltaic power generation modules.In the production process,defect samples occur infrequently and exhibit random shapes and sizes,which makes it challenging to collect defective samples.Additionally,the complex surface background of polysilicon cell wafers complicates the accurate identification and localization of defective regions.This paper proposes a novel Lightweight Multiscale Feature Fusion network(LMFF)to address these challenges.The network comprises a feature extraction network,a multi-scale feature fusion module(MFF),and a segmentation network.Specifically,a feature extraction network is proposed to obtain multi-scale feature outputs,and a multi-scale feature fusion module(MFF)is used to fuse multi-scale feature information effectively.In order to capture finer-grained multi-scale information from the fusion features,we propose a multi-scale attention module(MSA)in the segmentation network to enhance the network’s ability for small target detection.Moreover,depthwise separable convolutions are introduced to construct depthwise separable residual blocks(DSR)to reduce the model’s parameter number.Finally,to validate the proposed method’s defect segmentation and localization performance,we constructed three solar cell defect detection datasets:SolarCells,SolarCells-S,and PVEL-S.SolarCells and SolarCells-S are monocrystalline silicon datasets,and PVEL-S is a polycrystalline silicon dataset.Experimental results show that the IOU of our method on these three datasets can reach 68.5%,51.0%,and 92.7%,respectively,and the F1-Score can reach 81.3%,67.5%,and 96.2%,respectively,which surpasses other commonly usedmethods and verifies the effectiveness of our LMFF network. 展开更多
关键词 Defect segmentation multi-scale feature fusion multi-scale attention depthwise separable residual block
下载PDF
Retrospective analysis of pathological types and imaging features in pancreatic cancer: A comprehensive study
12
作者 Yang-Gang Luo Mei Wu Hong-Guang Chen 《World Journal of Gastrointestinal Oncology》 SCIE 2025年第1期121-129,共9页
BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features ... BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches. 展开更多
关键词 Pancreatic cancer Pathological types Imaging features Retrospective analysis Diagnostic accuracy
下载PDF
Constitution identification model in traditional Chinese medicine based on multiple features
13
作者 XU Anying WANG Tianshu +7 位作者 YANG Tao HAN Xiao ZHANG Xiaoyu WANG Ziyan ZHANG Qi LI Xiao SHANG Hongcai HU Kongfa 《Digital Chinese Medicine》 CAS CSCD 2024年第2期108-119,共12页
Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical... Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical efficiency and treatment outcomes.Methods First;TCM full-body inspection data acquisition equipment was employed to col-lect full-body standing images of healthy people;from which the constitutions were labelled and defined in accordance with the Constitution in Chinese Medicine Questionnaire(CCMQ);and a dataset encompassing labelled constitutions was constructed.Second;heat-suppres-sion valve(HSV)color space and improved local binary patterns(LBP)algorithm were lever-aged for the extraction of features such as facial complexion and body shape.In addition;a dual-branch deep network was employed to collect deep features from the full-body standing images.Last;the random forest(RF)algorithm was utilized to learn the extracted multifea-tures;which were subsequently employed to establish a TCM constitution identification mod-el.Accuracy;precision;and F1 score were the three measures selected to assess the perfor-mance of the model.Results It was found that the accuracy;precision;and F1 score of the proposed model based on multifeatures for identifying TCM constitutions were 0.842;0.868;and 0.790;respectively.In comparison with the identification models that encompass a single feature;either a single facial complexion feature;a body shape feature;or deep features;the accuracy of the model that incorporating all the aforementioned features was elevated by 0.105;0.105;and 0.079;the precision increased by 0.164;0.164;and 0.211;and the F1 score rose by 0.071;0.071;and 0.084;respectively.Conclusion The research findings affirmed the viability of the proposed model;which incor-porated multifeatures;including the facial complexion feature;the body shape feature;and the deep feature.In addition;by employing the proposed model;the objectification and intel-ligence of identifying constitutions in TCM practices could be optimized. 展开更多
关键词 Traditional Chinese medicine(TCM) Constitution identification Deep feature Facial complexion feature Body shape feature Multiple features
下载PDF
Optimizing Forecast Accuracy in Cryptocurrency Markets:Evaluating Feature Selection Techniques for Technical Indicators
14
作者 Ahmed El Youssefi Abdelaaziz Hessane +1 位作者 Imad Zeroual Yousef Farhaoui 《Computers, Materials & Continua》 2025年第5期3411-3433,共23页
This study provides a systematic investigation into the influence of feature selection methods on cryptocurrency price forecasting models employing technical indicators.In this work,over 130 technical indicators—cove... This study provides a systematic investigation into the influence of feature selection methods on cryptocurrency price forecasting models employing technical indicators.In this work,over 130 technical indicators—covering momentum,volatility,volume,and trend-related technical indicators—are subjected to three distinct feature selection approaches.Specifically,mutual information(MI),recursive feature elimination(RFE),and random forest importance(RFI).By extracting an optimal set of 20 predictors,the proposed framework aims to mitigate redundancy and overfitting while enhancing interpretability.These feature subsets are integrated into support vector regression(SVR),Huber regressors,and k-nearest neighbors(KNN)models to forecast the prices of three leading cryptocurrencies—Bitcoin(BTC/USDT),Ethereum(ETH/USDT),and Binance Coin(BNB/USDT)—across horizons ranging from 1 to 20 days.Model evaluation employs the coefficient of determination(R2)and the root mean squared logarithmic error(RMSLE),alongside a walk-forward validation scheme to approximate real-world trading contexts.Empirical results indicate that incorporating momentum and volatility measures substantially improves predictive accuracy,with particularly pronounced effects observed at longer forecast windows.Moreover,indicators related to volume and trend provide incremental benefits in select market conditions.Notably,an 80%–85% reduction in the original feature set frequently maintains or enhances model performance relative to the complete indicator set.These findings highlight the critical role of targeted feature selection in addressing high-dimensional financial data challenges while preserving model robustness.This research advances the field of cryptocurrency forecasting by offering a rigorous comparison of feature selection methods and their effects on multiple digital assets and prediction horizons.The outcomes highlight the importance of dimension-reduction strategies in developing more efficient and resilient forecasting algorithms.Future efforts should incorporate high-frequency data and explore alternative selection techniques to further refine predictive accuracy in this highly volatile domain. 展开更多
关键词 Cryptocurrency forecasting technical indicator feature selection walk-forward VOLATILITY MOMENTUM TREND
下载PDF
Heart Disease Prediction Model Using Feature Selection and Ensemble Deep Learning with Optimized Weight
15
作者 Iman S.Al-Mahdi Saad M.Darwish Magda M.Madbouly 《Computer Modeling in Engineering & Sciences》 2025年第4期875-909,共35页
Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irr... Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irrelevant or redundant features,and the variability in risk factors such as age,lifestyle,andmedical history.These challenges often lead to inefficient and less accuratemodels.Traditional predictionmethodologies face limitations in effectively handling large feature sets and optimizing classification performance,which can result in overfitting poor generalization,and high computational cost.This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm(GA)with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm(TSA).GA selects the most relevant features,reducing dimensionality and improvingmodel efficiency.Theselected features are then used to train an ensemble of deep learning models,where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy.This hybrid approach addresses key challenges in the field,such as high dimensionality,redundant features,and classification performance,by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble.These enhancements result in a model that achieves superior accuracy,generalization,and efficiency compared to traditional methods.The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditionalmodels.Specifically,it achieved an accuracy of 97.5%,a sensitivity of 97.2%,and a specificity of 97.8%.Additionally,with a 60-40 data split and 5-fold cross-validation,the model showed a significant reduction in training time(90 s),memory consumption(950 MB),and CPU usage(80%),highlighting its effectiveness in processing large,complex medical datasets for heart disease prediction. 展开更多
关键词 Heart disease prediction feature selection ensemble deep learning optimization genetic algorithm(GA) ensemble deep learning tunicate swarm algorithm(TSA) feature selection
下载PDF
Oversampling-Enhanced Feature Fusion-Based Hybrid ViT-1DCNN Model for Ransomware Cyber Attack Detection
16
作者 Muhammad Armghan Latif Zohaib Mushtaq +4 位作者 Saifur Rahman Saad Arif Salim Nasar Faraj Mursal Muhammad Irfan Haris Aziz 《Computer Modeling in Engineering & Sciences》 2025年第2期1667-1695,共29页
Ransomware attacks pose a significant threat to critical infrastructures,demanding robust detection mechanisms.This study introduces a hybrid model that combines vision transformer(ViT)and one-dimensional convolutiona... Ransomware attacks pose a significant threat to critical infrastructures,demanding robust detection mechanisms.This study introduces a hybrid model that combines vision transformer(ViT)and one-dimensional convolutional neural network(1DCNN)architectures to enhance ransomware detection capabilities.Addressing common challenges in ransomware detection,particularly dataset class imbalance,the synthetic minority oversampling technique(SMOTE)is employed to generate synthetic samples for minority class,thereby improving detection accuracy.The integration of ViT and 1DCNN through feature fusion enables the model to capture both global contextual and local sequential features,resulting in comprehensive ransomware classification.Tested on the UNSW-NB15 dataset,the proposed ViT-1DCNN model achieved 98%detection accuracy with precision,recall,and F1-score metrics surpassing conventional methods.This approach not only reduces false positives and negatives but also offers scalability and robustness for real-world cybersecurity applications.The results demonstrate the model’s potential as an effective tool for proactive ransomware detection,especially in environments where evolving threats require adaptable and high-accuracy solutions. 展开更多
关键词 Ransomware attacks CYBERSECURITY vision transformer convolutional neural network feature fusion ENCRYPTION threat detection
下载PDF
Harmonization of Heart Disease Dataset for Accurate Diagnosis:A Machine Learning Approach Enhanced by Feature Engineering
17
作者 Ruhul Amin Md.Jamil Khan +2 位作者 Tonway Deb Nath Md.Shamim Reza Jungpil Shin 《Computers, Materials & Continua》 2025年第3期3907-3919,共13页
Heart disease includes a multiplicity of medical conditions that affect the structure,blood vessels,and general operation of the heart.Numerous researchers have made progress in correcting and predicting early heart d... Heart disease includes a multiplicity of medical conditions that affect the structure,blood vessels,and general operation of the heart.Numerous researchers have made progress in correcting and predicting early heart disease,but more remains to be accomplished.The diagnostic accuracy of many current studies is inadequate due to the attempt to predict patients with heart disease using traditional approaches.By using data fusion from several regions of the country,we intend to increase the accuracy of heart disease prediction.A statistical approach that promotes insights triggered by feature interactions to reveal the intricate pattern in the data,which cannot be adequately captured by a single feature.We processed the data using techniques including feature scaling,outlier detection and replacement,null and missing value imputation,and more to improve the data quality.Furthermore,the proposed feature engineering method uses the correlation test for numerical features and the chi-square test for categorical features to interact with the feature.To reduce the dimensionality,we subsequently used PCA with 95%variation.To identify patients with heart disease,hyperparameter-based machine learning algorithms like RF,XGBoost,Gradient Boosting,LightGBM,CatBoost,SVM,and MLP are utilized,along with ensemble models.The model’s overall prediction performance ranges from 88%to 92%.In order to attain cutting-edge results,we then used a 1D CNN model,which significantly enhanced the prediction with an accuracy score of 96.36%,precision of 96.45%,recall of 96.36%,specificity score of 99.51%and F1 score of 96.34%.The RF model produces the best results among all the classifiers in the evaluation matrix without feature interaction,with accuracy of 90.21%,precision of 90.40%,recall of 90.86%,specificity of 90.91%,and F1 score of 90.63%.Our proposed 1D CNN model is 7%superior to the one without feature engineering when compared to the suggested approach.This illustrates how interaction-focused feature analysis can produce precise and useful insights for heart disease diagnosis. 展开更多
关键词 Heart disease HARMONIZATION feature interaction PCA model hyper tuning machine learning
下载PDF
Multi-Scale Feature Fusion and Advanced Representation Learning for Multi Label Image Classification
18
作者 Naikang Zhong Xiao Lin +1 位作者 Wen Du Jin Shi 《Computers, Materials & Continua》 2025年第3期5285-5306,共22页
Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feat... Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feature representation.However,existing methods often rely on the single-scale deep feature,neglecting shallow and deeper layer features,which poses challenges when predicting objects of varying scales within the same image.Although some studies have explored multi-scale features,they rarely address the flow of information between scales or efficiently obtain class-specific precise representations for features at different scales.To address these issues,we propose a two-stage,three-branch Transformer-based framework.The first stage incorporates multi-scale image feature extraction and hierarchical scale attention.This design enables the model to consider objects at various scales while enhancing the flow of information across different feature scales,improving the model’s generalization to diverse object scales.The second stage includes a global feature enhancement module and a region selection module.The global feature enhancement module strengthens interconnections between different image regions,mitigating the issue of incomplete represen-tations,while the region selection module models the cross-modal relationships between image features and labels.Together,these components enable the efficient acquisition of class-specific precise feature representations.Extensive experiments on public datasets,including COCO2014,VOC2007,and VOC2012,demonstrate the effectiveness of our proposed method.Our approach achieves consistent performance gains of 0.3%,0.4%,and 0.2%over state-of-the-art methods on the three datasets,respectively.These results validate the reliability and superiority of our approach for multi-label image classification. 展开更多
关键词 Image classification MULTI-LABEL multi scale attention mechanisms feature fusion
下载PDF
Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features
19
作者 Tao Liu Jianliang Wang +7 位作者 Jiayi Wang Yuanyuan Zhao Hui Wang Weijun Zhang Zhaosheng Yao Shengping Liu Xiaochun Zhong Chengming Sun 《Journal of Integrative Agriculture》 2025年第4期1403-1423,共21页
The wheat above-ground biomass(AGB)is an important index that shows the life activity of vegetation,which is of great significance for wheat growth monitoring and yield prediction.Traditional biomass estimation method... The wheat above-ground biomass(AGB)is an important index that shows the life activity of vegetation,which is of great significance for wheat growth monitoring and yield prediction.Traditional biomass estimation methods specifically include sample surveys and harvesting statistics.Although these methods have high estimation accuracy,they are time-consuming,destructive,and difficult to implement to monitor the biomass at a large scale.The main objective of this study is to optimize the traditional remote sensing methods to estimate the wheat AGBbased on improved convolutional features(CFs).Low-cost unmanned aerial vehicles(UAV)were used as the main data acquisition equipment.This study acquired image data acquired by RGB camera(RGB)and multi-spectral(MS)image data of the wheat population canopy for two wheat varieties and five key growth stages.Then,field measurements were conducted to obtain the actual wheat biomass data for validation.Based on the remote sensing indices(RSIs),structural features(SFs),and CFs,this study proposed a new feature named AUR-50(multi-source combination based on convolutional feature optimization)to estimate the wheat AGB.The results show that AUR-50 could estimate the wheat AGB more accurately than RSIs and SFs,and the average R^(2) exceeded 0.77.In the overwintering period,AUR-50_(MS)(multi-source combination with convolutional feature optimization using multispectral imagery)had the highest estimation accuracy(R^(2) of 0.88).In addition,AUR-50 reduced the effect of the vegetation index saturation on the biomass estimation accuracy by adding CFs,where the highest R^(2) was 0.69 at the flowering stage.The results of this study provide an effective method to evaluate the AGB in wheat with high throughput and a research reference for the phenotypic parameters of other crops. 展开更多
关键词 WHEAT above-ground biomass UAV entire growth stage convolutional feature
下载PDF
CG-FCLNet:Category-Guided Feature Collaborative Learning Network for Semantic Segmentation of Remote Sensing Images
20
作者 Min Yao Guangjie Hu Yaozu Zhang 《Computers, Materials & Continua》 2025年第5期2751-2771,共21页
Semantic segmentation of remote sensing images is a critical research area in the field of remote sensing.Despite the success of Convolutional Neural Networks(CNNs),they often fail to capture inter-layer feature relat... Semantic segmentation of remote sensing images is a critical research area in the field of remote sensing.Despite the success of Convolutional Neural Networks(CNNs),they often fail to capture inter-layer feature relationships and fully leverage contextual information,leading to the loss of important details.Additionally,due to significant intraclass variation and small inter-class differences in remote sensing images,CNNs may experience class confusion.To address these issues,we propose a novel Category-Guided Feature Collaborative Learning Network(CG-FCLNet),which enables fine-grained feature extraction and adaptive fusion.Specifically,we design a Feature Collaborative Learning Module(FCLM)to facilitate the tight interaction of multi-scale features.We also introduce a Scale-Aware Fusion Module(SAFM),which iteratively fuses features from different layers using a spatial attention mechanism,enabling deeper feature fusion.Furthermore,we design a Category-Guided Module(CGM)to extract category-aware information that guides feature fusion,ensuring that the fused featuresmore accurately reflect the semantic information of each category,thereby improving detailed segmentation.The experimental results show that CG-FCLNet achieves a Mean Intersection over Union(mIoU)of 83.46%,an mF1 of 90.87%,and an Overall Accuracy(OA)of 91.34% on the Vaihingen dataset.On the Potsdam dataset,it achieves a mIoU of 86.54%,an mF1 of 92.65%,and an OA of 91.29%.These results highlight the superior performance of CG-FCLNet compared to existing state-of-the-art methods. 展开更多
关键词 Semantic segmentation remote sensing feature context interaction attentionmodule category-guided module
下载PDF
上一页 1 2 248 下一页 到第
使用帮助 返回顶部