Aluminium metal matrix composites are finding increased applications in many areas. Adding of the third element to the metal matrix make the composite hybrid. This paper presents the study on the surface roughness cha...Aluminium metal matrix composites are finding increased applications in many areas. Adding of the third element to the metal matrix make the composite hybrid. This paper presents the study on the surface roughness characteristics of a hybrid aluminium metal matrix (Al6061-SiC-Al2O3) composites. The experimental studies were carried out on a lathe. The composites were prepared using the liquid metallurgy technique, in which 3, 6 and 9 wt % of particulates SiC and Al2O3 were dispersed in the base matrix. The obtained cast composites were carefully machined. The characteristics that influence the surface roughness such as feed rate, depth of cut and cutting speed were studied, which made the analysis come to a conclusion that the surface roughness is increases with the increase of feed rate and it reduces the surface roughness with the increase of cutting speed.展开更多
In the current practice of multi-axis machining of freeform surfaces, the interface surface between the roughing and finishing process is simply an offset surface of the nominal surface. While there have already been ...In the current practice of multi-axis machining of freeform surfaces, the interface surface between the roughing and finishing process is simply an offset surface of the nominal surface. While there have already been attempts at minimizing the machining time by considering the kinematic capacities of the machine tool and/or the physical constraints such as the cutting force, they all target independently at either the finishing or the roughing process alone and are based on the simple premise of an offset interface surface. Conceivably, since the total machining time should count that of both roughing and finishing process and both of them crucially depend on the interface surface, it is natural to ask if, under the same kinematic capacities and the same physical constraints, there is a nontrivial interface surface whose corresponding total machining time will be the minimum among all the possible(infinite) choices of interface surfaces, and this is the motivation behind the work of this paper. Specifically, with respect to the specific type of iso-planar milling for both roughing and finishing, we present a practical algorithm for determining such an optimal interface surface for an arbitrary freeform surface. While the algorithm is proposed for iso-planar milling, it can be easily adapted to other types of milling strategy such as contour milling. Both computer simulation and physical cutting experiments of the proposed method have convincingly demonstrated its advantages over the traditional simple offset method.展开更多
Metal framework composites have higher mechanical properties in examination to metals over an extensive variety of working conditions. This makes them an alluring alternative in swapping metals for different building ...Metal framework composites have higher mechanical properties in examination to metals over an extensive variety of working conditions. This makes them an alluring alternative in swapping metals for different building applications. The present review is a study on the influence of composite titanium on the cutting parameters, mechanical behavior, reinforcements, structure and nanostructure. This review will provide an understanding into selecting the optimum machining parameters for machining titanium composites. It’s also an attempt to give brief explanation by suitably machining the titanium composite which can be made reasonable.展开更多
文摘Aluminium metal matrix composites are finding increased applications in many areas. Adding of the third element to the metal matrix make the composite hybrid. This paper presents the study on the surface roughness characteristics of a hybrid aluminium metal matrix (Al6061-SiC-Al2O3) composites. The experimental studies were carried out on a lathe. The composites were prepared using the liquid metallurgy technique, in which 3, 6 and 9 wt % of particulates SiC and Al2O3 were dispersed in the base matrix. The obtained cast composites were carefully machined. The characteristics that influence the surface roughness such as feed rate, depth of cut and cutting speed were studied, which made the analysis come to a conclusion that the surface roughness is increases with the increase of feed rate and it reduces the surface roughness with the increase of cutting speed.
文摘In the current practice of multi-axis machining of freeform surfaces, the interface surface between the roughing and finishing process is simply an offset surface of the nominal surface. While there have already been attempts at minimizing the machining time by considering the kinematic capacities of the machine tool and/or the physical constraints such as the cutting force, they all target independently at either the finishing or the roughing process alone and are based on the simple premise of an offset interface surface. Conceivably, since the total machining time should count that of both roughing and finishing process and both of them crucially depend on the interface surface, it is natural to ask if, under the same kinematic capacities and the same physical constraints, there is a nontrivial interface surface whose corresponding total machining time will be the minimum among all the possible(infinite) choices of interface surfaces, and this is the motivation behind the work of this paper. Specifically, with respect to the specific type of iso-planar milling for both roughing and finishing, we present a practical algorithm for determining such an optimal interface surface for an arbitrary freeform surface. While the algorithm is proposed for iso-planar milling, it can be easily adapted to other types of milling strategy such as contour milling. Both computer simulation and physical cutting experiments of the proposed method have convincingly demonstrated its advantages over the traditional simple offset method.
文摘Metal framework composites have higher mechanical properties in examination to metals over an extensive variety of working conditions. This makes them an alluring alternative in swapping metals for different building applications. The present review is a study on the influence of composite titanium on the cutting parameters, mechanical behavior, reinforcements, structure and nanostructure. This review will provide an understanding into selecting the optimum machining parameters for machining titanium composites. It’s also an attempt to give brief explanation by suitably machining the titanium composite which can be made reasonable.