[Objectives] This study was conducted to develop a polyurea elastomer which can be sprayed on the surface of expanded polystyrene (EPS) floating balls, so as to improve the surface strength and service life of the flo...[Objectives] This study was conducted to develop a polyurea elastomer which can be sprayed on the surface of expanded polystyrene (EPS) floating balls, so as to improve the surface strength and service life of the floating balls. [Methods] The effects of the types and amounts of isocyanate, chain extenders and polyether polyols on the gelation rate, adhesion and wear resistance of polyurea elastomer were investigated, and it was finally determined the preparation process of polyurea elastomer using liquid isophorone diisocyanate (IPDI) and amino-terminated polyether (D2000) as the main raw materials, dimethylthiotoluene diamine (E300) as the chain extender and silica as the wear resistance modifier through two-step solution polymerization of prepolymerization and chain extension. [Results] The physical properties and chemical resistance tests of spray polyurea elastomer showed that it had good physical properties and acid and alkali resistance, and could meet the requirements of spraying and protection of EPS floating ball surface in marine environment. [Conclusions] Polyurea elastomer coating can improve the aging resistance, wear resistance and acid and alkali resistance of EPS floating balls, and prevent them from being fragile and floating randomly to form marine floating garbage which results in "white pollution".展开更多
We provide a numerical algorithm for numerically approximating a centrally located floating ball. We give examples of equilibria, and we present non-unique cases for the same physical parameters when the density of th...We provide a numerical algorithm for numerically approximating a centrally located floating ball. We give examples of equilibria, and we present non-unique cases for the same physical parameters when the density of the ball is either greater than the supporting liquid (heavy) or lighter than the density of the vapor above (light). We classify the non-uniqueness by analyzing a function related to the force balance. We derive the potential energy of these states, and make comparisons of the non-unique cases. In the cases of both the light and heavy floating balls, the evidence presented supports the conjecture that when there are two equilibria, the one with lower energy corresponds to the location of triple junction (between the ball, the vapor and the liquid) that is closer to the equator of the ball.展开更多
基金Supported by Special Project for High-quality Development of Marine Services and Fishery in Fujian Province in 2023(FJHY-YYKJ-2023-1-3)。
文摘[Objectives] This study was conducted to develop a polyurea elastomer which can be sprayed on the surface of expanded polystyrene (EPS) floating balls, so as to improve the surface strength and service life of the floating balls. [Methods] The effects of the types and amounts of isocyanate, chain extenders and polyether polyols on the gelation rate, adhesion and wear resistance of polyurea elastomer were investigated, and it was finally determined the preparation process of polyurea elastomer using liquid isophorone diisocyanate (IPDI) and amino-terminated polyether (D2000) as the main raw materials, dimethylthiotoluene diamine (E300) as the chain extender and silica as the wear resistance modifier through two-step solution polymerization of prepolymerization and chain extension. [Results] The physical properties and chemical resistance tests of spray polyurea elastomer showed that it had good physical properties and acid and alkali resistance, and could meet the requirements of spraying and protection of EPS floating ball surface in marine environment. [Conclusions] Polyurea elastomer coating can improve the aging resistance, wear resistance and acid and alkali resistance of EPS floating balls, and prevent them from being fragile and floating randomly to form marine floating garbage which results in "white pollution".
文摘We provide a numerical algorithm for numerically approximating a centrally located floating ball. We give examples of equilibria, and we present non-unique cases for the same physical parameters when the density of the ball is either greater than the supporting liquid (heavy) or lighter than the density of the vapor above (light). We classify the non-uniqueness by analyzing a function related to the force balance. We derive the potential energy of these states, and make comparisons of the non-unique cases. In the cases of both the light and heavy floating balls, the evidence presented supports the conjecture that when there are two equilibria, the one with lower energy corresponds to the location of triple junction (between the ball, the vapor and the liquid) that is closer to the equator of the ball.