The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were ...The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting.展开更多
This paper presents a theoretical and experimental study on controller design for the AMBs in a small-scale flywheel energy storage system,where the main goals are to achieve low energy consumption and improved rotord...This paper presents a theoretical and experimental study on controller design for the AMBs in a small-scale flywheel energy storage system,where the main goals are to achieve low energy consumption and improved rotordynamic stability.A H-infinity optimal control synthesis procedure is defined for the permanent-magnet-biased AMB-rotor system with 4 degrees of freedom.Through the choice of design weighting functions,notch filter characteristics are incorporated within the controller to reduce AMB current components caused by rotor vibration at the synchronous frequency and higher harmonics.Experimental tests are used to validate the controller design methodology and provide comparative results on performance and efficiency.The results show that the H-infinity controller is able to achieve stable rotor levitation and reduce AMB power consumption by more than 40%(from 4.80 to 2.64 Watts)compared with the conventional PD control method.Additionally,the H-infinity controller can prevent vibrational instability of the rotor nutation mode,which is prone to occur when operating with high rotational speeds.展开更多
基金supported by the National Key R&D Program of China(No.2022YFB3404204)the National Natural Science Foundation of China(NSFC)under Grant Nos.U2241232,U2341253 and 52375317.
文摘The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting.
基金supported by Thailand Science Research and Innovation and the National Research Council of Thailand under Grant RGU6280014.
文摘This paper presents a theoretical and experimental study on controller design for the AMBs in a small-scale flywheel energy storage system,where the main goals are to achieve low energy consumption and improved rotordynamic stability.A H-infinity optimal control synthesis procedure is defined for the permanent-magnet-biased AMB-rotor system with 4 degrees of freedom.Through the choice of design weighting functions,notch filter characteristics are incorporated within the controller to reduce AMB current components caused by rotor vibration at the synchronous frequency and higher harmonics.Experimental tests are used to validate the controller design methodology and provide comparative results on performance and efficiency.The results show that the H-infinity controller is able to achieve stable rotor levitation and reduce AMB power consumption by more than 40%(from 4.80 to 2.64 Watts)compared with the conventional PD control method.Additionally,the H-infinity controller can prevent vibrational instability of the rotor nutation mode,which is prone to occur when operating with high rotational speeds.