Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical ...Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical microscopy,scanning electron microscopy(SEM) and Auger electron spectroscopy(AES) were used to analyze the influence of oxygen content on cell structure,relative density,macro and micro morphology of cell walls,coverage area fraction of oxide film,thickness of oxide film and other aspects.Results indicate that the coverage area fraction of oxide film on bubble surface increases with the increase of oxygen content when the oxygen volume is less than 1.2%.While when the oxygen volume fraction is larger than 1.6%,an oxide film covers the entire bubble surface and aluminum foams with good cell structure can be produced.The thicknesses of oxide films of aluminum foams produced by gas mixtures containing 1.6%-21%oxygen are almost the same.The reasons why the thickness of oxide film nearly does not change with the variation of oxygen content and the amount of oxygen needed to achieve 100%coverage of oxide film are both discussed.In addition,the role of oxide film on bubble surface in foam stability is also analyzed.展开更多
In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron ...In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron spectroscopy (AES) was used. Based on the knowledge of corrosion science and hydrodynamics, two oxidation kinetics models of oxide film on bubble surface were established. The thicknesses of oxide films produced at different temperatures were predicted through those two models. Furthermore, the theoretical values were compared with the experimental values. The results indicate that in the range of 620?710 °C, the theoretical values of the thickness of oxide film predicted by the model including the rising process are higher than the experimental values. While, the theoretical values predicted by the model without the rising process are in good agreement with the experimental values, which shows this model objectively describes the oxidation process of oxide film on bubble surface. This work suggests that the oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process follows the Arrhenius equation.展开更多
A new technique, powder compact foaming process for the production of aluminumfoams has been studied in this article. According to this method, the aluminum pow-der is mixed with a powder foaming agent (TiH_2). Subseq...A new technique, powder compact foaming process for the production of aluminumfoams has been studied in this article. According to this method, the aluminum pow-der is mixed with a powder foaming agent (TiH_2). Subsequent to mixing, the powderblend is hot compacted to obtain a dense semi--finished product. Upon heating to tem-peratures within the range of the melting point, the foaming agent decomposes to evolvegas and the semi--finished product expands into a porous cellular aluminum. Foamingprocess is the key in this method. Based on experiments, the foaming characteris-tics were mainly analyzed and discussed. Experiments show that the aluminum--foamwith closed pores and a uniform cell structure of high porosity can be obtained usingthis method by adjusting the foaming parameters: the content of foaming agent andfoaming temperature.展开更多
A temperature programmed decomposition (TPD) apparatus with metal tube structure, in which Ar is used as the carrier gas, is established and the TPD spectrum of titanium hydride is acquired. Using consulting table met...A temperature programmed decomposition (TPD) apparatus with metal tube structure, in which Ar is used as the carrier gas, is established and the TPD spectrum of titanium hydride is acquired. Using consulting table method (CTM), spectrum superposition method (SSM) and differential spectrum technique, TPD spectrum of titanium hydride is separated and a set of thermal decomposition kinetics equations are acquired. According to these equations, the relationship between decomposition quantity and time for titanium hydride at the temperature of 940 K is obtained and the result well coincides with the AI alloy melt foaming process.展开更多
Porosity is a main defect in aluminum alloy castings, which is also thought to be severe in aluminum alloy castings produced by lost foam process due to the pyrolysis of the polystyrene foam pattern during pouring. Fu...Porosity is a main defect in aluminum alloy castings, which is also thought to be severe in aluminum alloy castings produced by lost foam process due to the pyrolysis of the polystyrene foam pattern during pouring. Fundamental experiments were carried out to evaluate the effect of process parameters such as the melt treatment, the cooling rate and the density of expanded polystyrene (EPS) foam on porosity in A356.2 bar casting. The effect of melt treatment including degassing and refining was investigated. The effect of cooling rate was also evaluated by changing the mold packing material such as the silica sand, the zircon sand and the steel shots. Gas entrapment due to the turbulent metal flow during mold filling in conventional molding process results in porosity. Mold filling sequence in lost foam process is different from that in conventional molding process. The effect of molten metal flow was estimated by comparing the density of the casting by conventional sodium silicate molding with that by lost foam process. Density measurement was conducted to analyze the extent of porosity in the casting. Source of the porosity in lost foam process can be divided into two factors, i.e. turbulence in molten metal flow and entraining residue or gas from the pattern during pouring.展开更多
The monolithic foamed propellants with high densities were prepared by casting and two-step foaming processes.Glycidyl azide polymer(GAP)and isocyanate were used as the binder system and 2,4,6,8,10,12-hexanitro-2,4,6,...The monolithic foamed propellants with high densities were prepared by casting and two-step foaming processes.Glycidyl azide polymer(GAP)and isocyanate were used as the binder system and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(HNIW,CL-20)was employed as the energetic component.The newly designed formulation containing 60%CL-20 produced a force constant of 1077 J/g and low flame temperature of 2817 K.Two foamed propellants with densities of 1.32 g/cm^(3)and 1.53 g/cm^(3)were fabricated by a confined foaming process and examined by closed bomb tests.The results revealed that porosity significantly affects burning performance.A size effect on combustion behaviors was observed for the foamed propellant with 5.56%porosity,and a double-hump progressive dynamic vivacity curve was obtained.At last,the 30 mm gun test was carried out to demonstrate the interior ballistic performance,and the muzzle velocity increased by 120 m/s at the same maximum chamber pressure when monolithic propellant was added in the charge.展开更多
基金Project(51371104)supported by the National Natural Science Foundation of China
文摘Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical microscopy,scanning electron microscopy(SEM) and Auger electron spectroscopy(AES) were used to analyze the influence of oxygen content on cell structure,relative density,macro and micro morphology of cell walls,coverage area fraction of oxide film,thickness of oxide film and other aspects.Results indicate that the coverage area fraction of oxide film on bubble surface increases with the increase of oxygen content when the oxygen volume is less than 1.2%.While when the oxygen volume fraction is larger than 1.6%,an oxide film covers the entire bubble surface and aluminum foams with good cell structure can be produced.The thicknesses of oxide films of aluminum foams produced by gas mixtures containing 1.6%-21%oxygen are almost the same.The reasons why the thickness of oxide film nearly does not change with the variation of oxygen content and the amount of oxygen needed to achieve 100%coverage of oxide film are both discussed.In addition,the role of oxide film on bubble surface in foam stability is also analyzed.
基金Project(51371104)supported by the National Nature Science Foundation of China
文摘In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron spectroscopy (AES) was used. Based on the knowledge of corrosion science and hydrodynamics, two oxidation kinetics models of oxide film on bubble surface were established. The thicknesses of oxide films produced at different temperatures were predicted through those two models. Furthermore, the theoretical values were compared with the experimental values. The results indicate that in the range of 620?710 °C, the theoretical values of the thickness of oxide film predicted by the model including the rising process are higher than the experimental values. While, the theoretical values predicted by the model without the rising process are in good agreement with the experimental values, which shows this model objectively describes the oxidation process of oxide film on bubble surface. This work suggests that the oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process follows the Arrhenius equation.
文摘A new technique, powder compact foaming process for the production of aluminumfoams has been studied in this article. According to this method, the aluminum pow-der is mixed with a powder foaming agent (TiH_2). Subsequent to mixing, the powderblend is hot compacted to obtain a dense semi--finished product. Upon heating to tem-peratures within the range of the melting point, the foaming agent decomposes to evolvegas and the semi--finished product expands into a porous cellular aluminum. Foamingprocess is the key in this method. Based on experiments, the foaming characteris-tics were mainly analyzed and discussed. Experiments show that the aluminum--foamwith closed pores and a uniform cell structure of high porosity can be obtained usingthis method by adjusting the foaming parameters: the content of foaming agent andfoaming temperature.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.50231010,50081002,90205005 and 19982001).
文摘A temperature programmed decomposition (TPD) apparatus with metal tube structure, in which Ar is used as the carrier gas, is established and the TPD spectrum of titanium hydride is acquired. Using consulting table method (CTM), spectrum superposition method (SSM) and differential spectrum technique, TPD spectrum of titanium hydride is separated and a set of thermal decomposition kinetics equations are acquired. According to these equations, the relationship between decomposition quantity and time for titanium hydride at the temperature of 940 K is obtained and the result well coincides with the AI alloy melt foaming process.
文摘Porosity is a main defect in aluminum alloy castings, which is also thought to be severe in aluminum alloy castings produced by lost foam process due to the pyrolysis of the polystyrene foam pattern during pouring. Fundamental experiments were carried out to evaluate the effect of process parameters such as the melt treatment, the cooling rate and the density of expanded polystyrene (EPS) foam on porosity in A356.2 bar casting. The effect of melt treatment including degassing and refining was investigated. The effect of cooling rate was also evaluated by changing the mold packing material such as the silica sand, the zircon sand and the steel shots. Gas entrapment due to the turbulent metal flow during mold filling in conventional molding process results in porosity. Mold filling sequence in lost foam process is different from that in conventional molding process. The effect of molten metal flow was estimated by comparing the density of the casting by conventional sodium silicate molding with that by lost foam process. Density measurement was conducted to analyze the extent of porosity in the casting. Source of the porosity in lost foam process can be divided into two factors, i.e. turbulence in molten metal flow and entraining residue or gas from the pattern during pouring.
文摘The monolithic foamed propellants with high densities were prepared by casting and two-step foaming processes.Glycidyl azide polymer(GAP)and isocyanate were used as the binder system and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(HNIW,CL-20)was employed as the energetic component.The newly designed formulation containing 60%CL-20 produced a force constant of 1077 J/g and low flame temperature of 2817 K.Two foamed propellants with densities of 1.32 g/cm^(3)and 1.53 g/cm^(3)were fabricated by a confined foaming process and examined by closed bomb tests.The results revealed that porosity significantly affects burning performance.A size effect on combustion behaviors was observed for the foamed propellant with 5.56%porosity,and a double-hump progressive dynamic vivacity curve was obtained.At last,the 30 mm gun test was carried out to demonstrate the interior ballistic performance,and the muzzle velocity increased by 120 m/s at the same maximum chamber pressure when monolithic propellant was added in the charge.