A fast label-equivalence-based connected components labeling algorithm is proposed in this paper.It is a combination of two existing efficient methods,which are pivotal operations in two-pass connected components labe...A fast label-equivalence-based connected components labeling algorithm is proposed in this paper.It is a combination of two existing efficient methods,which are pivotal operations in two-pass connected components labeling algorithms.One is a fast pixel scan method,and the other is an array-based Union-Find data structure.The scan procedure assigns each foreground pixel a provisional label according to the location of the pixel.That is to say,it labels the foreground pixels following background pixels and foreground pixels in different ways,which greatly reduces the number of neighbor pixel checks.The array-based Union-Find data structure resolves the label equivalences between provisional labels by using only a single array with path compression,and it improves the efficiency of the resolving procedure which is very time-consuming in general label-equivalence-based algorithms.The experiments on various types of images with different sizes show that the proposed algorithm is superior to other labeling approaches for huge images containing many big connected components.展开更多
Many network presentation learning algorithms(NPLA)have originated from the process of the random walk between nodes in recent years.Despite these algorithms can obtain great embedding results,there may be also some l...Many network presentation learning algorithms(NPLA)have originated from the process of the random walk between nodes in recent years.Despite these algorithms can obtain great embedding results,there may be also some limitations.For instance,only the structural information of nodes is considered when these kinds of algorithms are constructed.Aiming at this issue,a label and community information-based network presentation learning algorithm(LC-NPLA)is proposed in this paper.First of all,by using the community information and the label information of nodes,the first-order neighbors of nodes are reconstructed.In the next,the random walk strategy is improved by integrating the degree information and label information of nodes.Then,the node sequence obtained from random walk sampling is transformed into the node representation vector by the Skip-Gram model.At last,the experimental results on ten real-world networks demonstrate that the proposed algorithm has great advantages in the label classification,network reconstruction and link prediction tasks,compared with three benchmark algorithms.展开更多
A kind of packet labeling algorithm for autonomous system is introduced. The fairness of the algorithm for each traffic stream in the integrated-services is analyzed. It is shown that the rate of each stream in the in...A kind of packet labeling algorithm for autonomous system is introduced. The fairness of the algorithm for each traffic stream in the integrated-services is analyzed. It is shown that the rate of each stream in the integrated-services would converge to a stable value if the transmittfing or forwarding rates converge to that of the receiving exponentially.展开更多
On the basis of inner-system labeling signaling used in the integrated access system,a kind of inner-system labeling algorithm is introduced in this paper, and the fairness of the algorithm for each traffic stream in ...On the basis of inner-system labeling signaling used in the integrated access system,a kind of inner-system labeling algorithm is introduced in this paper, and the fairness of the algorithm for each traffic stream in the integrated-services is analyzed. The base of this algorithm is Class of Services (CoS), and each packet entering the relative independent area (an autonomous system) would be labeled according to the service type or Quality of Service (QoS) in demand,and be scheduled and managed within the system (the system can be enlarged if conforming to the same protocol). The experimental results show that each of the stream rate in the integratedservices would converge to a stable value if the rates of transmitting converge to that of the receiving exponentially, that is, the effective traffic of each stream would be fair.展开更多
Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatoria...Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatorial optimization problem,which is widely applied in communication networks,multimodal transportation networks,and data compression.Some approximation algorithms and heuristics algorithms have been proposed for the problem.Firefly algorithm is a new meta-heuristic algorithm.Because of its simplicity and easy implementation,it has been successfully applied in various fields.However,the basic firefly algorithm is not suitable for discrete problems.To this end,a novel discrete firefly algorithm for the MLST problem is proposed in this paper.A binary operation method to update firefly positions and a local feasible handling method are introduced,which correct unfeasible solutions,eliminate redundant labels,and make the algorithm more suitable for discrete problems.Computational results show that the algorithm has good performance.The algorithm can be extended to solve other discrete optimization problems.展开更多
It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical informati...It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical information is used to analyze the coupled label relationship.In this work,firstly Bayesian and hypothesis testing methods are applied to predict the label set size of testing samples within their k nearest neighbor samples,which combines global and local statistical information,and then apriori algorithm is used to mine the label coupling relationship among multiple labels rather than pairwise labels,which can exploit the label coupling relations more accurately and comprehensively.The experimental results on text,biology and audio datasets shown that,compared with the state-of-the-art algorithm,the proposed algorithm can obtain better performance on 5 common criteria.展开更多
A new method for multi-protocol label switching is presented in this study, whose core idea is to construct model for simulating process of accommodating network online loads and then adopt genetic algorithm to optimi...A new method for multi-protocol label switching is presented in this study, whose core idea is to construct model for simulating process of accommodating network online loads and then adopt genetic algorithm to optimize the model. Due to the heuristic property of evolutional method, the new method is efficient and effective, which is verified by the experiments.展开更多
The paper designs a peripheral maximum gray differ-ence(PMGD)image segmentation method,a connected-compo-nent labeling(CCL)algorithm based on dynamic run length(DRL),and a real-time implementation streaming processor ...The paper designs a peripheral maximum gray differ-ence(PMGD)image segmentation method,a connected-compo-nent labeling(CCL)algorithm based on dynamic run length(DRL),and a real-time implementation streaming processor for DRL-CCL.And it verifies the function and performance in space target monitoring scene by the carrying experiment of Tianzhou-3 cargo spacecraft(TZ-3).The PMGD image segmentation method can segment the image into highly discrete and simple point tar-gets quickly,which reduces the generation of equivalences greatly and improves the real-time performance for DRL-CCL.Through parallel pipeline design,the storage of the streaming processor is optimized by 55%with no need for external me-mory,the logic is optimized by 60%,and the energy efficiency ratio is 12 times than that of the graphics processing unit,62 times than that of the digital signal proccessing,and 147 times than that of personal computers.Analyzing the results of 8756 images completed on-orbit,the speed is up to 5.88 FPS and the target detection rate is 100%.Our algorithm and implementation method meet the requirements of lightweight,high real-time,strong robustness,full-time,and stable operation in space irradia-tion environment.展开更多
<div style="text-align:justify;"> This paper studies a kind of urban security risk assessment model based on multi-label learning, which is transformed into the solution of linear equations through a s...<div style="text-align:justify;"> This paper studies a kind of urban security risk assessment model based on multi-label learning, which is transformed into the solution of linear equations through a series of transformations, and then the solution of linear equations is transformed into an optimization problem. Finally, this paper uses some classical optimization algorithms to solve these optimization problems, the convergence of the algorithm is proved, and the advantages and disadvantages of several optimization methods are compared. </div>展开更多
为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷...为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No. 81071219)
文摘A fast label-equivalence-based connected components labeling algorithm is proposed in this paper.It is a combination of two existing efficient methods,which are pivotal operations in two-pass connected components labeling algorithms.One is a fast pixel scan method,and the other is an array-based Union-Find data structure.The scan procedure assigns each foreground pixel a provisional label according to the location of the pixel.That is to say,it labels the foreground pixels following background pixels and foreground pixels in different ways,which greatly reduces the number of neighbor pixel checks.The array-based Union-Find data structure resolves the label equivalences between provisional labels by using only a single array with path compression,and it improves the efficiency of the resolving procedure which is very time-consuming in general label-equivalence-based algorithms.The experiments on various types of images with different sizes show that the proposed algorithm is superior to other labeling approaches for huge images containing many big connected components.
基金What is more,we thank the National Natural Science Foundation of China(Nos.61966039,62241604)the Scientific Research Fund Project of the Education Department of Yunnan Province(No.2023Y0565)Also,this work was supported in part by the Xingdian Talent Support Program for Young Talents(No.XDYC-QNRC-2022-0518).
文摘Many network presentation learning algorithms(NPLA)have originated from the process of the random walk between nodes in recent years.Despite these algorithms can obtain great embedding results,there may be also some limitations.For instance,only the structural information of nodes is considered when these kinds of algorithms are constructed.Aiming at this issue,a label and community information-based network presentation learning algorithm(LC-NPLA)is proposed in this paper.First of all,by using the community information and the label information of nodes,the first-order neighbors of nodes are reconstructed.In the next,the random walk strategy is improved by integrating the degree information and label information of nodes.Then,the node sequence obtained from random walk sampling is transformed into the node representation vector by the Skip-Gram model.At last,the experimental results on ten real-world networks demonstrate that the proposed algorithm has great advantages in the label classification,network reconstruction and link prediction tasks,compared with three benchmark algorithms.
文摘A kind of packet labeling algorithm for autonomous system is introduced. The fairness of the algorithm for each traffic stream in the integrated-services is analyzed. It is shown that the rate of each stream in the integrated-services would converge to a stable value if the transmittfing or forwarding rates converge to that of the receiving exponentially.
文摘On the basis of inner-system labeling signaling used in the integrated access system,a kind of inner-system labeling algorithm is introduced in this paper, and the fairness of the algorithm for each traffic stream in the integrated-services is analyzed. The base of this algorithm is Class of Services (CoS), and each packet entering the relative independent area (an autonomous system) would be labeled according to the service type or Quality of Service (QoS) in demand,and be scheduled and managed within the system (the system can be enlarged if conforming to the same protocol). The experimental results show that each of the stream rate in the integratedservices would converge to a stable value if the rates of transmitting converge to that of the receiving exponentially, that is, the effective traffic of each stream would be fair.
基金This work is supported by the National Natural Science Foundation of China under Grant 61772179the Hunan Provincial Natural Science Foundation of China under Grant 2019JJ40005+3 种基金the Science and Technology Plan Project of Hunan Province under Grant 2016TP1020the Double First-Class University Project of Hunan Province under Grant Xiangjiaotong[2018]469the Open Fund Project of Hunan Provincial Key Laboratory of Intelligent Information Processing and Application for Hengyang Normal University under Grant IIPA19K02the Science Foundation of Hengyang Normal University under Grant 19QD13.
文摘Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatorial optimization problem,which is widely applied in communication networks,multimodal transportation networks,and data compression.Some approximation algorithms and heuristics algorithms have been proposed for the problem.Firefly algorithm is a new meta-heuristic algorithm.Because of its simplicity and easy implementation,it has been successfully applied in various fields.However,the basic firefly algorithm is not suitable for discrete problems.To this end,a novel discrete firefly algorithm for the MLST problem is proposed in this paper.A binary operation method to update firefly positions and a local feasible handling method are introduced,which correct unfeasible solutions,eliminate redundant labels,and make the algorithm more suitable for discrete problems.Computational results show that the algorithm has good performance.The algorithm can be extended to solve other discrete optimization problems.
基金Supported by Australian Research Council Discovery(DP130102691)the National Science Foundation of China(61302157)+1 种基金China National 863 Project(2012AA12A308)China Pre-research Project of Nuclear Industry(FZ1402-08)
文摘It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical information is used to analyze the coupled label relationship.In this work,firstly Bayesian and hypothesis testing methods are applied to predict the label set size of testing samples within their k nearest neighbor samples,which combines global and local statistical information,and then apriori algorithm is used to mine the label coupling relationship among multiple labels rather than pairwise labels,which can exploit the label coupling relations more accurately and comprehensively.The experimental results on text,biology and audio datasets shown that,compared with the state-of-the-art algorithm,the proposed algorithm can obtain better performance on 5 common criteria.
基金This work was supported by the National Natural Science Foundation of China (No10371097)Open Project of Com-putational Key Laboratory in Yunnan Provice
文摘A new method for multi-protocol label switching is presented in this study, whose core idea is to construct model for simulating process of accommodating network online loads and then adopt genetic algorithm to optimize the model. Due to the heuristic property of evolutional method, the new method is efficient and effective, which is verified by the experiments.
文摘The paper designs a peripheral maximum gray differ-ence(PMGD)image segmentation method,a connected-compo-nent labeling(CCL)algorithm based on dynamic run length(DRL),and a real-time implementation streaming processor for DRL-CCL.And it verifies the function and performance in space target monitoring scene by the carrying experiment of Tianzhou-3 cargo spacecraft(TZ-3).The PMGD image segmentation method can segment the image into highly discrete and simple point tar-gets quickly,which reduces the generation of equivalences greatly and improves the real-time performance for DRL-CCL.Through parallel pipeline design,the storage of the streaming processor is optimized by 55%with no need for external me-mory,the logic is optimized by 60%,and the energy efficiency ratio is 12 times than that of the graphics processing unit,62 times than that of the digital signal proccessing,and 147 times than that of personal computers.Analyzing the results of 8756 images completed on-orbit,the speed is up to 5.88 FPS and the target detection rate is 100%.Our algorithm and implementation method meet the requirements of lightweight,high real-time,strong robustness,full-time,and stable operation in space irradia-tion environment.
文摘<div style="text-align:justify;"> This paper studies a kind of urban security risk assessment model based on multi-label learning, which is transformed into the solution of linear equations through a series of transformations, and then the solution of linear equations is transformed into an optimization problem. Finally, this paper uses some classical optimization algorithms to solve these optimization problems, the convergence of the algorithm is proved, and the advantages and disadvantages of several optimization methods are compared. </div>
文摘为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。