One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelli...One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelligence (AI) havebecome the basis for making strategic decisions in many sensitive areas, such as fraud detection, risk management,medical diagnosis, and counter-terrorism. However, there is still a need to assess how terrorist attacks are related,initiated, and detected. For this purpose, we propose a novel framework for classifying and predicting terroristattacks. The proposed framework posits that neglected text attributes included in the Global Terrorism Database(GTD) can influence the accuracy of the model’s classification of terrorist attacks, where each part of the datacan provide vital information to enrich the ability of classifier learning. Each data point in a multiclass taxonomyhas one or more tags attached to it, referred as “related tags.” We applied machine learning classifiers to classifyterrorist attack incidents obtained from the GTD. A transformer-based technique called DistilBERT extracts andlearns contextual features from text attributes to acquiremore information from text data. The extracted contextualfeatures are combined with the “key features” of the dataset and used to perform the final classification. Thestudy explored different experimental setups with various classifiers to evaluate the model’s performance. Theexperimental results show that the proposed framework outperforms the latest techniques for classifying terroristattacks with an accuracy of 98.7% using a combined feature set and extreme gradient boosting classifier.展开更多
多视角多频带逆合成孔径雷达(inverse synthetic aperture radar,ISAR)融合成像技术克服了单雷达成像分辨率受发射带宽和观测视角的限制,是提高ISAR成像的二维分辨率的新手段。在宽带小角度观测条件下,针对目标散射系数随频率变化的情况...多视角多频带逆合成孔径雷达(inverse synthetic aperture radar,ISAR)融合成像技术克服了单雷达成像分辨率受发射带宽和观测视角的限制,是提高ISAR成像的二维分辨率的新手段。在宽带小角度观测条件下,针对目标散射系数随频率变化的情况,提出一种基于几何绕射理论(geometrical theory of diffraction,GTD)模型的多视角多频带ISAR融合成像方法。首先,以GTD模型为基础建立ISAR成像回波模型;然后,将多视角多频带ISAR融合成像问题转化为信号稀疏重构问题,并采用正交匹配追踪算法求解,在保证融合成像质量的同时提高了的成像效率;最后,利用仿真实验验证了所提方法的有效性。展开更多
针对全极化二维GTD散射中心模型,首先提出一种二维极化线性变化(polarization linear variationPL)的ESPRIT算法(2D-PL-ESPRIT)用于提取雷达目标散射中心参数;其次,就2D-PL-ESPRIT算法提取目标散射中心的可行性进行了理论分析。相比通...针对全极化二维GTD散射中心模型,首先提出一种二维极化线性变化(polarization linear variationPL)的ESPRIT算法(2D-PL-ESPRIT)用于提取雷达目标散射中心参数;其次,就2D-PL-ESPRIT算法提取目标散射中心的可行性进行了理论分析。相比通过多个单极化通道方法提取散射中心,2D-PL-ESPRIT算法可以有效提高参数估计精度,降低计算复杂度;相比二维极化并行(parallel polarization,PP)的全极化MUSIC方法(2D-PP-MUSIC),2D-PL-ESPRIT算法避免了复杂的二维谱峰搜索以及通过子空间正交方法判断散射类型的步骤,有效降低了运算量。之后,对三种算法进行了复乘计算量的比较以说明2D-PL-ESPRIT算法具有较高的运算效率。最后,通过仿真实验验证了2D-PL-ESPRIT方法用于全极化2D-GTD模型散射中心提取的有效性。展开更多
现代谱估计方法能够反演基于几何绕射理论(geometric theory of diffraction,GTD)的模型参数,但不能处理非均匀不完备的雷达散射截面(radar cross section,RCS)数据。此外,通过暗室测量获取完备的RCS数据也需要较大的时空开销。针对上...现代谱估计方法能够反演基于几何绕射理论(geometric theory of diffraction,GTD)的模型参数,但不能处理非均匀不完备的雷达散射截面(radar cross section,RCS)数据。此外,通过暗室测量获取完备的RCS数据也需要较大的时空开销。针对上述问题,提出一种基于迭代加权最小二乘(iteratively reweighed least squares,IRLS)的跳频模式下GTD散射参数提取和RCS重构方法。该方法将稀疏重构理论与GTD散射模型相结合,能够在RCS数据非均匀不完备的条件下反演散射参数和实现RCS重构。仿真数据和电磁计算数据用于验证所提方法的有效性,实验结果表明该方法对降低暗室步进频率RCS的测量成本和扩增雷达RCS数据具有重要意义。展开更多
文摘One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelligence (AI) havebecome the basis for making strategic decisions in many sensitive areas, such as fraud detection, risk management,medical diagnosis, and counter-terrorism. However, there is still a need to assess how terrorist attacks are related,initiated, and detected. For this purpose, we propose a novel framework for classifying and predicting terroristattacks. The proposed framework posits that neglected text attributes included in the Global Terrorism Database(GTD) can influence the accuracy of the model’s classification of terrorist attacks, where each part of the datacan provide vital information to enrich the ability of classifier learning. Each data point in a multiclass taxonomyhas one or more tags attached to it, referred as “related tags.” We applied machine learning classifiers to classifyterrorist attack incidents obtained from the GTD. A transformer-based technique called DistilBERT extracts andlearns contextual features from text attributes to acquiremore information from text data. The extracted contextualfeatures are combined with the “key features” of the dataset and used to perform the final classification. Thestudy explored different experimental setups with various classifiers to evaluate the model’s performance. Theexperimental results show that the proposed framework outperforms the latest techniques for classifying terroristattacks with an accuracy of 98.7% using a combined feature set and extreme gradient boosting classifier.
文摘多视角多频带逆合成孔径雷达(inverse synthetic aperture radar,ISAR)融合成像技术克服了单雷达成像分辨率受发射带宽和观测视角的限制,是提高ISAR成像的二维分辨率的新手段。在宽带小角度观测条件下,针对目标散射系数随频率变化的情况,提出一种基于几何绕射理论(geometrical theory of diffraction,GTD)模型的多视角多频带ISAR融合成像方法。首先,以GTD模型为基础建立ISAR成像回波模型;然后,将多视角多频带ISAR融合成像问题转化为信号稀疏重构问题,并采用正交匹配追踪算法求解,在保证融合成像质量的同时提高了的成像效率;最后,利用仿真实验验证了所提方法的有效性。
文摘针对全极化二维GTD散射中心模型,首先提出一种二维极化线性变化(polarization linear variationPL)的ESPRIT算法(2D-PL-ESPRIT)用于提取雷达目标散射中心参数;其次,就2D-PL-ESPRIT算法提取目标散射中心的可行性进行了理论分析。相比通过多个单极化通道方法提取散射中心,2D-PL-ESPRIT算法可以有效提高参数估计精度,降低计算复杂度;相比二维极化并行(parallel polarization,PP)的全极化MUSIC方法(2D-PP-MUSIC),2D-PL-ESPRIT算法避免了复杂的二维谱峰搜索以及通过子空间正交方法判断散射类型的步骤,有效降低了运算量。之后,对三种算法进行了复乘计算量的比较以说明2D-PL-ESPRIT算法具有较高的运算效率。最后,通过仿真实验验证了2D-PL-ESPRIT方法用于全极化2D-GTD模型散射中心提取的有效性。
文摘现代谱估计方法能够反演基于几何绕射理论(geometric theory of diffraction,GTD)的模型参数,但不能处理非均匀不完备的雷达散射截面(radar cross section,RCS)数据。此外,通过暗室测量获取完备的RCS数据也需要较大的时空开销。针对上述问题,提出一种基于迭代加权最小二乘(iteratively reweighed least squares,IRLS)的跳频模式下GTD散射参数提取和RCS重构方法。该方法将稀疏重构理论与GTD散射模型相结合,能够在RCS数据非均匀不完备的条件下反演散射参数和实现RCS重构。仿真数据和电磁计算数据用于验证所提方法的有效性,实验结果表明该方法对降低暗室步进频率RCS的测量成本和扩增雷达RCS数据具有重要意义。