The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting th...The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting thermal energy into mechanical work and electric power.The operation of the generator encounters challenges,including high temperature,high pressure,high rotational speed,and other engineering problems,such as leakage.Experimental studies of sCO_(2)turbines are insufficient because of the significant difficulties in turbine manufacturing and system construction.Unlike most experimental investigations that primarily focus on 100 kW‐or MW‐scale power generation systems,we consider,for the first time,a small‐scale power generator using sCO_(2).A partial admission axial turbine was designed and manufactured with a rated rotational speed of 40,000 rpm,and a CO_(2)transcritical power cycle test loop was constructed to validate the performance of our manufactured generator.A resistant gas was proposed in the constructed turbine expander to solve the leakage issue.Both dynamic and steady performances were investigated.The results indicated that a peak electric power of 11.55 kW was achieved at 29,369 rpm.The maximum total efficiency of the turbo‐generator was 58.98%,which was affected by both the turbine rotational speed and pressure ratio,according to the proposed performance map.展开更多
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto...The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.展开更多
The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in eff...The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.展开更多
With the increasing proportion of renewable energy in China’s energy structure,among which photovoltaic power generation is also developing rapidly.As the photovoltaic(PV)power output is highly unstable and subject t...With the increasing proportion of renewable energy in China’s energy structure,among which photovoltaic power generation is also developing rapidly.As the photovoltaic(PV)power output is highly unstable and subject to a variety of factors,it brings great challenges to the stable operation and dispatch of the power grid.Therefore,accurate short-term PV power prediction is of great significance to ensure the safe grid connection of PV energy.Currently,the short-term prediction of PV power has received extensive attention and research,but the accuracy and precision of the prediction have to be further improved.Therefore,this paper reviews the PV power prediction methods from five aspects:influencing factors,evaluation indexes,prediction status,difficulties and future trends.Then summarizes the current difficulties in prediction based on an in-depth analysis of the current research status of physical methods based on the classification ofmodel features,statistical methods,artificial intelligence methods,and combinedmethods of prediction.Finally,the development trend ofPVpower generation prediction technology and possible future research directions are envisioned.展开更多
High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is...High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is becoming more and more vital for the development of wind power.The HFO phenomenon of wind turbines under different scenarios usually has different mechanisms.Hence,engineers need to acquire the working mechanisms of the different HFO damping technologies and select the appropriate one to ensure the effective implementation of oscillation damping in practical engineering.This paper introduces the general assumptions of WPGS when analyzing HFO,systematically summarizes the reasons for the occurrence of HFO in different scenarios,deeply analyses the key points and difficulties of HFO damping under different scenarios,and then compares the technical performances of various types of HFO suppression methods to provide adequate references for engineers in the application of technology.Finally,this paper discusses possible future research difficulties in the problem of HFO,as well as the possible future trends in the demand for HFO damping.展开更多
Partial shading conditions(PSCs)caused by uneven illumination become one of the most common problems in photovoltaic(PV)systems,which can make the PV power-voltage(P-V)characteristics curve show multi-peaks.Traditiona...Partial shading conditions(PSCs)caused by uneven illumination become one of the most common problems in photovoltaic(PV)systems,which can make the PV power-voltage(P-V)characteristics curve show multi-peaks.Traditional maximum power point tracking(MPPT)methods have shortcomings in tracking to the global maximum power point(GMPP),resulting in a dramatic decrease in output power.In order to solve the above problems,intelligent algorithms are used in MPPT.However,the existing intelligent algorithms have some disadvantages,such as slow convergence speed and large search oscillation.Therefore,an improved whale algorithm(IWOA)combined with the P&O(IWOA-P&O)is proposed for the MPPT of PV power generation in this paper.Firstly,IWOA is used to track the range interval of the GMPP,and then P&O is used to accurately find the MPP in that interval.Compared with other algorithms,simulation results show that this method has an average tracking efficiency of 99.79%and an average tracking time of 0.16 s when tracking GMPP.Finally,experimental verification is conducted,and the results show that the proposed algorithm has better MPPT performance compared to popular particle swarm optimization(PSO)and PSO-P&O algorithms.展开更多
One of the impacts of the Fukushima disaster was the shutdown of all nuclear power plants in Japan,reaching zero production in 2015.In response,the country started importing more fossil energy including coal,oil,and n...One of the impacts of the Fukushima disaster was the shutdown of all nuclear power plants in Japan,reaching zero production in 2015.In response,the country started importing more fossil energy including coal,oil,and natural gas to fill the energy gap.However,this led to a significant increase in carbon emissions,hindering the efforts to reduce its carbon footprint.In the current situation,Japan is actively working to balance its energy requirements with environmental considerations,including the utilization of hydrogen fuel.Therefore,this paper aims to explore the feasibility and implications of using hydrogen power plants as a means to reduce emissions,and this analysis will be conducted using the energy modeling of the MARKAL-TIMES Japan framework.The hydrogen scenario(HS)is assumed with the extensive integration of hydrogen into the power generation sector,supported by a hydrogen import scheme.Additionally,this scenario will be compared with the Business as Usual(BAU)scenario.The results showed that the generation capacities of the BAU and HS scenarios have significantly different primary energy supplies.The BAU scenario is highly dependent on fossil fuels,while the HS scenario integrates hydrogen contribution along with an increase in renewable energy,reaching a peak contribution of 2,160 PJ in 2050.In the HS scenario,the target of reducing CO_(2) emissions by 80%is achieved through significant hydrogen penetration.By 2050,the total CO_(2) emissions are estimated to be 939 million tons for the BAU scenario and 261 million tons for the Hydrogen scenario.In addition,the contribution of hydrogen to electricity generation is expected to be 153 TWh,smaller than PV and wind power.展开更多
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog...Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.展开更多
Cumulative assessment is a tool for the project developer to try and take into consideration not only their contribution to cumulative impacts but also other projects and external factors that may place their developm...Cumulative assessment is a tool for the project developer to try and take into consideration not only their contribution to cumulative impacts but also other projects and external factors that may place their developments at risk.This study assessed the cumulative impacts of air emissions from 22 major power plants in southeast Bangladesh planned to generate 21,550 MW of electricity.It also includes anticipated growth in small to medium size industries,brickfields,highway traffic,inland water transport,transhippers,jetty,and vessel transports used for transporting fuel resources for these power plants.A 50 km by 50 km airshed is considered for air quality modeling.Cumulative analysis indicates that predicted MGLCs(Maximum Ground Level Concentrations)of NO2 and CO are complying with both Bangladesh NAAQS(National Ambient Air Quality Standards)and WBG(World Bank Group)Guidelines.The daily average MGLC of PM_(2.5)(62.45µg/m^(3))from all sources complies with NAAQS,however,exceeds the WBG Guidelines.Annual PM_(2.5) concentration(15.45µg/m^(3))exceeds NAAQS and WBG Guidelines.The PM10 concentration complies with the NAAQS for both 24-hour and annual averaging times.Annual average concentration(23.12µg/m^(3))exceeds WBG Guidelines.Daily average SO2 concentration(102.49µg/m^(3))complies with the NAAQS however,it exceeds the WBG guideline values.High concentrations of PM_(2.5) and SO2 are due to the contribution of transboundary emissions and secondary pollutants in the atmosphere.This dispersion modeling outcome can be used by the policymakers for the pollution reduction strategy.展开更多
In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is ...In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.展开更多
With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehen...With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects.展开更多
Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters...Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.展开更多
With the rapid development of technology and economy,the demand for energy in society is increasing.People are gradually realizing that fossil energy is limited,and the development of new energy may also face situatio...With the rapid development of technology and economy,the demand for energy in society is increasing.People are gradually realizing that fossil energy is limited,and the development of new energy may also face situations where it cannot meet social needs.The problem of resource shortage is gradually exposed to people.Therefore,the development of usable new energy has become an urgent problem for society to solve.At present,electricity is the most widely used energy source worldwide and photovoltaic power generation technology is gradually becoming well-known.As an emerging industry,the development of photovoltaic power generation still requires continuous promotion by national and social policies to be extended to various industries and ensure the stability of its energy supply.This article mainly outlines the principles,characteristics,and advantages of photovoltaic power generation,and briefly explains the current technology types and application aspects of photovoltaic power generation to contribute to its promotion and better serve all aspects of social life with new energy.展开更多
Combining wave energy converters(WECs)with floating offshore wind turbines proves a potential strategy to achieve better use of marine renewable energy.The full coupling investigation on the dynamic and power generati...Combining wave energy converters(WECs)with floating offshore wind turbines proves a potential strategy to achieve better use of marine renewable energy.The full coupling investigation on the dynamic and power generation features of the hybrid systems under operational sea states is necessary but limited by numerical simulation tools.Here an aero-hydro-servo-elastic coupling numerical tool is developed and applied to investigate the motion,mooring tension,and energy conversion performance of a hybrid system consisting of a spar-type floating wind turbine and an annular wave energy converter.Results show that the addition of the WEC has no significant negative effect on the dynamic performance of the platform and even enhances the rotational stability of the platform.For surge and pitch motion,the peak of the spectra is originated from the dominating wave component,whereas for the heave motion,the peak of the spectrum is the superposed effect of the dominating wave component and the resonance of the system.The addition of the annular WEC can slightly improve the wind power by making the rotor to be in a better position to face the incoming wind and provide considerable wave energy production,which can compensate for the downtime of the offshore wind.展开更多
The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distribute...The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.展开更多
Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching m...Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed.Firstly,the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output,obtains the optimal output value under the economic conditions of each new energy station,and then obtains the maximum consumption space of the new energy station.Secondly,based on the optimization results of the first stage,the second stage dispatching model uses the dispatching method of fuzzy comprehensive ranking priority to prioritize the new energy stations,and then makes a fair allocation to the dispatching of the wind and solar stations.Finally,the analysis of a specific example shows that themodel can take into account the fairness of active power distribution of new energy stations on the basis of ensuring the economy of system operation,make full use of the consumption space,and realize the medium and long-term fairness distribution of dispatching plan.展开更多
Demand Response(DR)is one of the most cost-effective and unfailing techniques used by utilities for consumer load shifting.This research paper presents different DR programs in deregulated environments.The description...Demand Response(DR)is one of the most cost-effective and unfailing techniques used by utilities for consumer load shifting.This research paper presents different DR programs in deregulated environments.The description and the classification of DR along with their potential benefits and associated cost components are presented.In addition,most DR measurement indices and their evaluation are also highlighted.Initially,the economic load model incorporated thermal,wind,and energy storage by considering the elasticity market price from its calculated locational marginal pricing(LMP).The various DR programs like direct load control,critical peak pricing,real-time pricing,time of use,and capacity market programs are considered during this study.The effect of demand response in electricity prices is highlighted using a simulated study on IEEE 30 bus system.Simulation is done by the Shuffled Frog Leap Algorithm(SFLA).Comprehensive performance comparison on voltage deviations,losses,and cost with and without considering DR is also presented in this paper.展开更多
The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete ra...The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy.展开更多
Increasing the efficiency and proportion of photovoltaic power generation installations is one of the best ways to reduce both CO_(2) emissions and reliance on fossil-fuel-based power supplies.Solar energy is a clean ...Increasing the efficiency and proportion of photovoltaic power generation installations is one of the best ways to reduce both CO_(2) emissions and reliance on fossil-fuel-based power supplies.Solar energy is a clean and renewable power source with excellent potential for further development and utilization.In 2021,the global solar installed capacity was about 749.7 GW.Establishing correlations between solar power generation,standard coal equivalent,carbon sinks,and green sinks is crucial.However,there have been few reports about correlations between the efficiency of tracking solar photovoltaic panels and the above parameters.This paper calculates the increased power generation achievable through the use of tracking photovoltaic panels compared with traditional fixed panels and establishes relationships between power generation,standard coal equivalent,and carbon sinks,providing a basis for attempts to reduce reliance on carbon-based fuels.The calculations show that power generation efficiency can be improved by about 26.12%by enabling solar panels to track the sun's rays during the day and from season to season.Through the use of this improved technology,global CO_(2) emissions can be reduced by 183.63 Mt,and the standard coal equivalent can be reduced by 73.67 Mt yearly.Carbon capture is worth approximately EUR 15.48 billion,and carbon accounting analysis plays a vital role in carbon trading.展开更多
To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based o...To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based on PSO-BP is proposed.Particle Swarm Optimization and BP neural network are used to establish the forecasting model,the Markov chain model is used to correct the forecasting error of the model,and the weighted fitting method is used to forecast the annual load curve,to complete the optimal allocation of complementary generating capacity of photovoltaic power stations.The experimental results show that thismethod reduces the average loss of photovoltaic output prediction,improves the prediction accuracy and recall rate of photovoltaic output prediction,and ensures the effective operation of the power system.展开更多
基金National Science Fund for Excellent Young Scholars,Grant/Award Number:52022066。
文摘The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting thermal energy into mechanical work and electric power.The operation of the generator encounters challenges,including high temperature,high pressure,high rotational speed,and other engineering problems,such as leakage.Experimental studies of sCO_(2)turbines are insufficient because of the significant difficulties in turbine manufacturing and system construction.Unlike most experimental investigations that primarily focus on 100 kW‐or MW‐scale power generation systems,we consider,for the first time,a small‐scale power generator using sCO_(2).A partial admission axial turbine was designed and manufactured with a rated rotational speed of 40,000 rpm,and a CO_(2)transcritical power cycle test loop was constructed to validate the performance of our manufactured generator.A resistant gas was proposed in the constructed turbine expander to solve the leakage issue.Both dynamic and steady performances were investigated.The results indicated that a peak electric power of 11.55 kW was achieved at 29,369 rpm.The maximum total efficiency of the turbo‐generator was 58.98%,which was affected by both the turbine rotational speed and pressure ratio,according to the proposed performance map.
基金This work was supported of National Natural Science Foundation of China Fund(No.52306033)State Key Laboratory of Engines Fund(No.SKLE-K2022-07)the Jiangxi Provincial Postgraduate Innovation Special Fund(No.YC2022-s513).
文摘The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.
基金Funded by the“Investigation and Evaluation of the Hot Dry Rock Resources in the Guide-Dalianhai Area of the Gonghe Basin,Qinghai”(DD20211336,DD20211337,DD20211338)“Hot Dry Rock Resources Exploration and Production Demonstration Project”(DD20230018)of the China Geological Survey。
文摘The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.
基金supported in part by the Inner Mongolia Autonomous Region Science and Technology Project Fund(2021GG0336)Inner Mongolia Natural Science Fund(2023ZD20).
文摘With the increasing proportion of renewable energy in China’s energy structure,among which photovoltaic power generation is also developing rapidly.As the photovoltaic(PV)power output is highly unstable and subject to a variety of factors,it brings great challenges to the stable operation and dispatch of the power grid.Therefore,accurate short-term PV power prediction is of great significance to ensure the safe grid connection of PV energy.Currently,the short-term prediction of PV power has received extensive attention and research,but the accuracy and precision of the prediction have to be further improved.Therefore,this paper reviews the PV power prediction methods from five aspects:influencing factors,evaluation indexes,prediction status,difficulties and future trends.Then summarizes the current difficulties in prediction based on an in-depth analysis of the current research status of physical methods based on the classification ofmodel features,statistical methods,artificial intelligence methods,and combinedmethods of prediction.Finally,the development trend ofPVpower generation prediction technology and possible future research directions are envisioned.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant 2682023CX019National Natural Science Foundation of China under Grant U23B6007 and Grant 52307141Sichuan Science and Technology Program under Grant 2024NSFSC0115。
文摘High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is becoming more and more vital for the development of wind power.The HFO phenomenon of wind turbines under different scenarios usually has different mechanisms.Hence,engineers need to acquire the working mechanisms of the different HFO damping technologies and select the appropriate one to ensure the effective implementation of oscillation damping in practical engineering.This paper introduces the general assumptions of WPGS when analyzing HFO,systematically summarizes the reasons for the occurrence of HFO in different scenarios,deeply analyses the key points and difficulties of HFO damping under different scenarios,and then compares the technical performances of various types of HFO suppression methods to provide adequate references for engineers in the application of technology.Finally,this paper discusses possible future research difficulties in the problem of HFO,as well as the possible future trends in the demand for HFO damping.
基金supported in part by the Natural Science Foundation of Jiangsu Province under Grant BK20200969(L.Z.,URL:http://std.jiangsu.gov.cn/)in part by Basic Science(Natural Science)Research Project of Colleges and Universities in Jiangsu Province under Grant 22KJB470025(L.R.,URL:http://jyt.jiangsu.gov.cn/)in part by Social People’s Livelihood Technology Plan General Project of Nantong under Grant MS12021015(L.Q.,URL:http://kjj.nantong.gov.cn/).
文摘Partial shading conditions(PSCs)caused by uneven illumination become one of the most common problems in photovoltaic(PV)systems,which can make the PV power-voltage(P-V)characteristics curve show multi-peaks.Traditional maximum power point tracking(MPPT)methods have shortcomings in tracking to the global maximum power point(GMPP),resulting in a dramatic decrease in output power.In order to solve the above problems,intelligent algorithms are used in MPPT.However,the existing intelligent algorithms have some disadvantages,such as slow convergence speed and large search oscillation.Therefore,an improved whale algorithm(IWOA)combined with the P&O(IWOA-P&O)is proposed for the MPPT of PV power generation in this paper.Firstly,IWOA is used to track the range interval of the GMPP,and then P&O is used to accurately find the MPP in that interval.Compared with other algorithms,simulation results show that this method has an average tracking efficiency of 99.79%and an average tracking time of 0.16 s when tracking GMPP.Finally,experimental verification is conducted,and the results show that the proposed algorithm has better MPPT performance compared to popular particle swarm optimization(PSO)and PSO-P&O algorithms.
文摘One of the impacts of the Fukushima disaster was the shutdown of all nuclear power plants in Japan,reaching zero production in 2015.In response,the country started importing more fossil energy including coal,oil,and natural gas to fill the energy gap.However,this led to a significant increase in carbon emissions,hindering the efforts to reduce its carbon footprint.In the current situation,Japan is actively working to balance its energy requirements with environmental considerations,including the utilization of hydrogen fuel.Therefore,this paper aims to explore the feasibility and implications of using hydrogen power plants as a means to reduce emissions,and this analysis will be conducted using the energy modeling of the MARKAL-TIMES Japan framework.The hydrogen scenario(HS)is assumed with the extensive integration of hydrogen into the power generation sector,supported by a hydrogen import scheme.Additionally,this scenario will be compared with the Business as Usual(BAU)scenario.The results showed that the generation capacities of the BAU and HS scenarios have significantly different primary energy supplies.The BAU scenario is highly dependent on fossil fuels,while the HS scenario integrates hydrogen contribution along with an increase in renewable energy,reaching a peak contribution of 2,160 PJ in 2050.In the HS scenario,the target of reducing CO_(2) emissions by 80%is achieved through significant hydrogen penetration.By 2050,the total CO_(2) emissions are estimated to be 939 million tons for the BAU scenario and 261 million tons for the Hydrogen scenario.In addition,the contribution of hydrogen to electricity generation is expected to be 153 TWh,smaller than PV and wind power.
基金supported by National Natural Science Foundation of China(No.516667017).
文摘Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.
文摘Cumulative assessment is a tool for the project developer to try and take into consideration not only their contribution to cumulative impacts but also other projects and external factors that may place their developments at risk.This study assessed the cumulative impacts of air emissions from 22 major power plants in southeast Bangladesh planned to generate 21,550 MW of electricity.It also includes anticipated growth in small to medium size industries,brickfields,highway traffic,inland water transport,transhippers,jetty,and vessel transports used for transporting fuel resources for these power plants.A 50 km by 50 km airshed is considered for air quality modeling.Cumulative analysis indicates that predicted MGLCs(Maximum Ground Level Concentrations)of NO2 and CO are complying with both Bangladesh NAAQS(National Ambient Air Quality Standards)and WBG(World Bank Group)Guidelines.The daily average MGLC of PM_(2.5)(62.45µg/m^(3))from all sources complies with NAAQS,however,exceeds the WBG Guidelines.Annual PM_(2.5) concentration(15.45µg/m^(3))exceeds NAAQS and WBG Guidelines.The PM10 concentration complies with the NAAQS for both 24-hour and annual averaging times.Annual average concentration(23.12µg/m^(3))exceeds WBG Guidelines.Daily average SO2 concentration(102.49µg/m^(3))complies with the NAAQS however,it exceeds the WBG guideline values.High concentrations of PM_(2.5) and SO2 are due to the contribution of transboundary emissions and secondary pollutants in the atmosphere.This dispersion modeling outcome can be used by the policymakers for the pollution reduction strategy.
文摘In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.
文摘With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects.
文摘Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.
文摘With the rapid development of technology and economy,the demand for energy in society is increasing.People are gradually realizing that fossil energy is limited,and the development of new energy may also face situations where it cannot meet social needs.The problem of resource shortage is gradually exposed to people.Therefore,the development of usable new energy has become an urgent problem for society to solve.At present,electricity is the most widely used energy source worldwide and photovoltaic power generation technology is gradually becoming well-known.As an emerging industry,the development of photovoltaic power generation still requires continuous promotion by national and social policies to be extended to various industries and ensure the stability of its energy supply.This article mainly outlines the principles,characteristics,and advantages of photovoltaic power generation,and briefly explains the current technology types and application aspects of photovoltaic power generation to contribute to its promotion and better serve all aspects of social life with new energy.
基金financially supported by the Key-Area Research and Development Program of Guangdong Province (Grant No.2020B1111010001)the National Natural Science Foundation of China (Grant Nos.52071096 and 52201322)+3 种基金the National Natural Science Foundation of China National Outstanding Youth Science Fund Project (Grant No.52222109)Guangdong Basic and Applied Basic Research Foundation (Grant No.2022B1515020036)the Fundamental Research Funds for the Central Universities (Grant No.2022ZYGXZR014)the State Key Laboratory of Coastal and Offshore Engineering through the Open Research Fund Program (Grant No.LP2214)。
文摘Combining wave energy converters(WECs)with floating offshore wind turbines proves a potential strategy to achieve better use of marine renewable energy.The full coupling investigation on the dynamic and power generation features of the hybrid systems under operational sea states is necessary but limited by numerical simulation tools.Here an aero-hydro-servo-elastic coupling numerical tool is developed and applied to investigate the motion,mooring tension,and energy conversion performance of a hybrid system consisting of a spar-type floating wind turbine and an annular wave energy converter.Results show that the addition of the WEC has no significant negative effect on the dynamic performance of the platform and even enhances the rotational stability of the platform.For surge and pitch motion,the peak of the spectra is originated from the dominating wave component,whereas for the heave motion,the peak of the spectrum is the superposed effect of the dominating wave component and the resonance of the system.The addition of the annular WEC can slightly improve the wind power by making the rotor to be in a better position to face the incoming wind and provide considerable wave energy production,which can compensate for the downtime of the offshore wind.
文摘The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.
基金a phased achievement of Gansu Province’s Major Science and Technology Project(19ZD2GA003)“Key Technologies and Demonstrative Applications of Market Consumption and Dispatching Control of Photothermal-Photovoltaic-Wind PowerNew Energy Base(Multi Energy System Optimization)”.
文摘Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed.Firstly,the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output,obtains the optimal output value under the economic conditions of each new energy station,and then obtains the maximum consumption space of the new energy station.Secondly,based on the optimization results of the first stage,the second stage dispatching model uses the dispatching method of fuzzy comprehensive ranking priority to prioritize the new energy stations,and then makes a fair allocation to the dispatching of the wind and solar stations.Finally,the analysis of a specific example shows that themodel can take into account the fairness of active power distribution of new energy stations on the basis of ensuring the economy of system operation,make full use of the consumption space,and realize the medium and long-term fairness distribution of dispatching plan.
文摘Demand Response(DR)is one of the most cost-effective and unfailing techniques used by utilities for consumer load shifting.This research paper presents different DR programs in deregulated environments.The description and the classification of DR along with their potential benefits and associated cost components are presented.In addition,most DR measurement indices and their evaluation are also highlighted.Initially,the economic load model incorporated thermal,wind,and energy storage by considering the elasticity market price from its calculated locational marginal pricing(LMP).The various DR programs like direct load control,critical peak pricing,real-time pricing,time of use,and capacity market programs are considered during this study.The effect of demand response in electricity prices is highlighted using a simulated study on IEEE 30 bus system.Simulation is done by the Shuffled Frog Leap Algorithm(SFLA).Comprehensive performance comparison on voltage deviations,losses,and cost with and without considering DR is also presented in this paper.
文摘The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy.
文摘Increasing the efficiency and proportion of photovoltaic power generation installations is one of the best ways to reduce both CO_(2) emissions and reliance on fossil-fuel-based power supplies.Solar energy is a clean and renewable power source with excellent potential for further development and utilization.In 2021,the global solar installed capacity was about 749.7 GW.Establishing correlations between solar power generation,standard coal equivalent,carbon sinks,and green sinks is crucial.However,there have been few reports about correlations between the efficiency of tracking solar photovoltaic panels and the above parameters.This paper calculates the increased power generation achievable through the use of tracking photovoltaic panels compared with traditional fixed panels and establishes relationships between power generation,standard coal equivalent,and carbon sinks,providing a basis for attempts to reduce reliance on carbon-based fuels.The calculations show that power generation efficiency can be improved by about 26.12%by enabling solar panels to track the sun's rays during the day and from season to season.Through the use of this improved technology,global CO_(2) emissions can be reduced by 183.63 Mt,and the standard coal equivalent can be reduced by 73.67 Mt yearly.Carbon capture is worth approximately EUR 15.48 billion,and carbon accounting analysis plays a vital role in carbon trading.
文摘To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based on PSO-BP is proposed.Particle Swarm Optimization and BP neural network are used to establish the forecasting model,the Markov chain model is used to correct the forecasting error of the model,and the weighted fitting method is used to forecast the annual load curve,to complete the optimal allocation of complementary generating capacity of photovoltaic power stations.The experimental results show that thismethod reduces the average loss of photovoltaic output prediction,improves the prediction accuracy and recall rate of photovoltaic output prediction,and ensures the effective operation of the power system.