期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor regulate the interaction between astrocytes and Schwann cells at the trigeminal root entry zone
1
作者 Madeha Ishag Adam Ling Lin +6 位作者 Amir Mahmoud Makin Xiao-Fen Zhang Lu-Xi Zhou Xin-Yue Liao Li Zhao Feng Wang Dao-Shu Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1364-1370,共7页
The trigeminal root entry zone is the zone at which the myelination switches from peripheral Schwann cells to central oligodendrocytes.Its special anatomical and physiological structure renders it susceptible to nerve... The trigeminal root entry zone is the zone at which the myelination switches from peripheral Schwann cells to central oligodendrocytes.Its special anatomical and physiological structure renders it susceptible to nerve injury.The etiology of most primary trigeminal neuralgia is closely related to microvascular compression of the trigeminal root entry zone.This study aimed to develop an efficient in vitro model mimicking the glial environment of trigeminal root entry zone as a tool to investigate the effects of glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor on the structural and functional integrity of trigeminal root entry zone and modulation of cellular interactions.Primary astrocytes and Schwann cells isolated from trigeminal root entry zone of postnatal rats were inoculated into a two-well silicon culture insert to mimic the trigeminal root entry zone microenvironment and treated with glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor.In monoculture,glial cell line-derived neurotrophic factor promoted the migration of Schwann cells,but it did not have effects on the migration of astrocytes.In the co-culture system,glial cell line-derived neurotrophic factor promoted the bidirectional migration of astrocytes and Schwann cells.Brain-derived neurotrophic factor markedly promoted the activation and migration of astrocytes.However,in the co-culture system,brain-derived neurotrophic factor inhibited the migration of astrocytes and Schwann cells to a certain degree.These findings suggest that glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor are involved in the regulation of the astrocyte-Schwann cell interaction in the co-culture system derived from the trigeminal root entry zone.This system can be used as a cell model to study the mechanism of glial dysregulation associated with trigeminal nerve injury and possible therapeutic interventions. 展开更多
关键词 ASTROCYTES brain-derived neurotrophic factor cell migration glial cell line-derived neurotrophic factor glial interaction Schwann cells trigeminal nerve
下载PDF
Therapeutic potential of glial cell line-derived neurotrophic factor and cell reprogramming for hippocampal-related neurological disorders 被引量:3
2
作者 Priscila Chiavellini Martina Canatelli-Mallat +2 位作者 Marianne Lehmann Rodolfo G.Goya Gustavo R.Morel 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第3期469-476,共8页
Hippocampus serves as a pivotal role in cognitive and emotional processes,as well as in the regulation of the hypothalamus-pituitary axis.It is known to undergo mild neurodegenerative changes during normal aging and s... Hippocampus serves as a pivotal role in cognitive and emotional processes,as well as in the regulation of the hypothalamus-pituitary axis.It is known to undergo mild neurodegenerative changes during normal aging and severe atrophy in Alzheimer's disease.Furthermore,dysregulation in the hippocampal function leads to epilepsy and mood disorders.In the first section,we summarized the most salient knowledge on the role of glial cell-line-derived neurotrophic factor and its receptors focused on aging,cognition and neurodegenerative and hippocampal-related neurological diseases mentioned above.In the second section,we reviewed the therapeutic approaches,particularly gene therapy,using glial cell-line-derived neurotrophic factor or its gene,as a key molecule in the development of neurological disorders.In the third section,we pointed at the potential of regenerative medicine,as an emerging and less explored strategy for the treatment of hippocampal disorders.We briefly reviewed the use of partial reprogramming to restore brain functions,non-neuronal cell reprogramming to generate neural stem cells,and neural progenitor cells as source-specific neuronal types to be implanted in animal models of specific neurodegenerative disorders. 展开更多
关键词 AGING Alzheimer's disease cell reprogramming EPILEPSY gene therapy glial cell line-derived neurotrophic factor HIPPOCAMPUS major depression
下载PDF
Stem cell transplantation and/or adenoviral glial cell line-derived neurotrophic factor promote functional recovery in hemiparkinsonian rats 被引量:1
3
作者 May-Jywan Tsai Shih-Chieh Hung +5 位作者 Ching-Feng Weng Su-Fen Fan Dann-Ying Liou Wen-Cheng Huang Kang-Du Liu Henrich Cheng 《World Journal of Stem Cells》 SCIE 2021年第1期78-90,共13页
BACKGROUND Parkinson’s disease(PD)is a neurological disorder characterized by the progressive loss of midbrain dopamine(DA)neurons.Bone marrow mesenchymal stem cells(BMSCs)can differentiate into multiple cell types i... BACKGROUND Parkinson’s disease(PD)is a neurological disorder characterized by the progressive loss of midbrain dopamine(DA)neurons.Bone marrow mesenchymal stem cells(BMSCs)can differentiate into multiple cell types including neurons and glia.Transplantation of BMSCs is regarded as a potential approach for promoting neural regeneration.Glial cell line-derived neurotrophic factor(GDNF)can induce BMSC differentiation into neuron-like cells.This work evaluated the efficacy of nigral grafts of human BMSCs(hMSCs)and/or adenoviral(Ad)GDNF gene transfer in 6-hydroxydopamine(6-OHDA)-lesioned hemiparkinsonian rats.AIM To evaluate the efficacy of nigral grafts of hMSCs and/or Ad-GDNF gene transfer in 6-OHDA-lesioned hemiparkinsonian rats.METHODS We used immortalized hMSCs,which retain their potential for neuronal differentiation.hMSCs,preinduced hMSCs,or Ad-GDNF effectively enhanced neuronal connections in cultured neurons.In vivo,preinduced hMSCs and/or Ad-GDNF were injected into the substantia nigra(SN)after induction of a unilateral 6-OHDA lesion in the nigrostriatal pathway.RESULTS Hemiparkinsonian rats that received preinduced hMSC graft and/or Ad-GDNF showed significant recovery of apomorphine-induced rotational behavior and the number of nigral DA neurons.However,DA levels in the striatum were not restored by these therapeutic treatments.Grafted hMSCs might reconstitute a niche to support tissue repair rather than contribute to the generation of new neurons in the injured SN.CONCLUSION The results suggest that preinduced hMSC grafts exert a regenerative effect and may have the potential to improve clinical outcome. 展开更多
关键词 Stem cells TRANSPLANTATION Parkinson’s disease glial cell line-derived neurotrophic factor ADENOVIRUS NEUROREGENERATION
下载PDF
Advances in treatment of neurodegenerative diseases: Perspectives for combination of stem cells with neurotrophic factors 被引量:9
4
作者 Jie Wang Wei-Wei Hu +1 位作者 Zhi Jiang Mei-Jiang Feng 《World Journal of Stem Cells》 SCIE CAS 2020年第5期323-338,共16页
Neurodegenerative diseases,including Alzheimer’s disease,Parkinson’s disease,Huntington’s disease and amyotrophic lateral sclerosis,are a group of incurable neurological disorders,characterized by the chronic progr... Neurodegenerative diseases,including Alzheimer’s disease,Parkinson’s disease,Huntington’s disease and amyotrophic lateral sclerosis,are a group of incurable neurological disorders,characterized by the chronic progressive loss of different neuronal subtypes.However,despite its increasing prevalence among the everincreasing aging population,little progress has been made in the coincident immense efforts towards development of therapeutic agents.Research interest has recently turned towards stem cells including stem cells-derived exosomes,neurotrophic factors,and their combination as potential therapeutic agents in neurodegenerative diseases.In this review,we summarize the progress in therapeutic strategies based on stem cells combined with neurotrophic factors and mesenchymal stem cells-derived exosomes for neurodegenerative diseases,with an emphasis on the combination therapy. 展开更多
关键词 Neurodegenerative diseases Stem cells Brain-derived neurotrophic factor glial cell line-derived neurotrophic factor Nerve growth factor Combination therapy
下载PDF
Acupuncture promotes functional recovery after cerebral hemorrhage by upregulating neurotrophic factor expression 被引量:25
5
作者 Dan Li Qiu-Xin Chen +4 位作者 Wei Zou Xiao-Wei Sun Xue-Ping Yu Xiao-Hong Dai Wei Teng 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第8期1510-1517,共8页
Acupuncture is widely used in the treatment of cerebral hemorrhage,and it improves outcomes in experimental animal models and patients.However,the mechanisms underlying the effectiveness of acupuncture treatment for c... Acupuncture is widely used in the treatment of cerebral hemorrhage,and it improves outcomes in experimental animal models and patients.However,the mechanisms underlying the effectiveness of acupuncture treatment for cerebral hemorrhage are still unclear.In this study,a model of intracerebral hemorrhage was produced by injecting 50μL autologous blood into the caudate nucleus in Wistar rats.Acupuncture at Baihui(DU20)and Qubin(GB7)acupoints was performed at a depth of 1.0 inch,12 hours after blood injection,once every 24 hours.The needle was rotated at 200 r/min for 5 minutes,For each 30-minute session,needling at 200 r/min was performed for three sessions,each lasting 5 minutes.For the positive control group,at 6 hours,and 1,2,3 and 7 days after induction of hemorrhage,the rats were intraperitoneally injected with 1 mL aniracetam(0.75 mg/mL),three times a day.The Bederson behavioral test was used to assess palsy in the contralateral limbs.Western blot assay was used to examine the expression levels of Nestin and basic fibroblast growth factor in the basal ganglia.Immunohistochemistry was performed to count the number of Nestin-and glial cell line-derived neurotrophic factor-positive cells in the basal ganglia.Acupuncture effectively reduced hemorrhage and brain edema,elevated the expression levels of Nestin and basic fibroblast growth factor in the basal ganglia,and increased the number of Nestin-and glial cell line-derived neurotrophic factor-positive cells in the basal ganglia.Together,these findings suggest that acupuncture promotes functional recovery after cerebral hemorrhage by increasing the expression of neurotrophic factors.The study was approved by the Committee for Experimental Animals of Heilongjiang Medical Laboratory Animal Center(approval No.2017061001)on June 10,2017. 展开更多
关键词 ACUPUNCTURE basic fibroblast growth factor brain cell protection cerebral hemorrhage electron microscope glial cell line-derived neurotrophic factor immunohistochemistry NESTIN western blot assay
下载PDF
Molecular and cellular changes in the post-traumatic spinal cord remodeling after autoinfusion of a genetically-enriched leucoconcentrate in a mini-pig model 被引量:1
6
作者 Maria Aleksandrovna Davleeva Ravil Rasimovich Garifulin +9 位作者 Farid Vagizovich Bashirov Andrei Aleksandrovich Izmailov Leniz Faritovich Nurullin Ilnur Ildusovich Salafutdinov Dilara Zilbarovna Gatina Dmitrij Nikolaevich Shcherbinin Andrei Aleksandrovich Lysenko Irina Leonidovna Tutykhina Maksim Mikhailovich Shmarov Rustem Robertovich Islamov 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1505-1511,共7页
Post-traumatic spinal cord remodeling includes both degenerating and regenerating processes,which affect the potency of the functional recovery after spinal cord injury(SCI).Gene therapy for spinal cord injury is prop... Post-traumatic spinal cord remodeling includes both degenerating and regenerating processes,which affect the potency of the functional recovery after spinal cord injury(SCI).Gene therapy for spinal cord injury is proposed as a promising therapeutic strategy to induce positive changes in remodeling of the affected neural tissue.In our previous studies for delivering the therapeutic genes at the site of spinal cord injury,we developed a new approach using an autologous leucoconcentrate transduced ex vivo with chimeric adenoviruses(Ad5/35)carrying recombinant cDNA.In the present study,the efficacy of the intravenous infusion of an autologous genetically-enriched leucoconcentrate simultaneously producing recombinant vascular endothelial growth factor(VEGF),glial cell line-derived neurotrophic factor(GDNF),and neural cell adhesion molecule(NCAM)was evaluated with regard to the molecular and cellular changes in remodeling of the spinal cord tissue at the site of damage in a model of mini-pigs with moderate spinal cord injury.Experimental animals were randomly divided into two groups of 4 pigs each:the therapeutic(infused with the leucoconcentrate simultaneously transduced with a combination of the three chimeric adenoviral vectors Ad5/35‐VEGF165,Ad5/35‐GDNF,and Ad5/35‐NCAM1)and control groups(infused with intact leucoconcentrate).The morphometric and immunofluorescence analysis of the spinal cord regeneration in the rostral and caudal segments according to the epicenter of the injury in the treated animals compared to the control mini-pigs showed:(1)higher sparing of the grey matter and increased survivability of the spinal cord cells(lower number of Caspase-3-positive cells and decreased expression of Hsp27);(2)recovery of synaptophysin expression;(3)prevention of astrogliosis(lower area of glial fibrillary acidic protein-positive astrocytes and ionized calcium binding adaptor molecule 1-positive microglial cells);(4)higher growth rates of regeneratingβIII-tubulin-positive axons accompanied by a higher number of oligodendrocyte transcription factor 2-positive oligodendroglial cells in the lateral corticospinal tract region.These results revealed the efficacy of intravenous infusion of the autologous genetically-enriched leucoconcentrate producing recombinant VEGF,GDNF,and NCAM in the acute phase of spinal cord injury on the positive changes in the post-traumatic remodeling nervous tissue at the site of direct injury.Our data provide a solid platform for a new ex vivo gene therapy for spinal cord injury and will facilitate further translation of regenerative therapies in clinical neurology. 展开更多
关键词 autologous genetically-enriched leucoconcentrate chimeric adenoviral vector gene therapy glial cell line-derived neurotrophic factor MINI-PIG neural cell adhesion molecule spinal cord contusion injury vascular endothelial growth factor
下载PDF
Type-B monoamine oxidase inhibitors in neurological diseases:clinical applications based on preclinical findings
7
作者 Marika Alborghetti Edoardo Bianchini +3 位作者 Lanfranco De Carolis Silvia Galli Francesco E.Pontieri Domiziana Rinaldi 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期16-21,共6页
Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced ... Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease.There is also evidence suppo rting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease,such as mood deflection,cognitive impairment,sleep disturbances,and fatigue.Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors,particularly glial cell line-derived neurotrophic factor,which suppo rt dopaminergic neurons.Besides,safinamide may interfere with neurodegenerative mechanisms,countera cting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity.Due to the dual mechanism of action,the new generation of type-B monoamine oxidase inhibitors,including safinamide,is gaining interest in other neurological pathologies,and many supporting preclinical studies are now available.The potential fields of application concern epilepsy,Duchenne muscular dystrophy,multiple scle rosis,and above all,ischemic brain injury.The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline,rasagiline,and safinamide in Parkinson's disease and beyond,focusing on possible future therapeutic applications. 展开更多
关键词 glial cell line-derived neurotrophic factor(GDNF) GLUTAMATE neurological disorders NEUROPROTECTION Parkinson's disease preclinical studies RASAGILINE SAFINAMIDE SELEGILINE type-B monoamine oxidase(MAO_(B))inhibitors
下载PDF
Molecular mechanisms underlying the neuroprotection of environmental enrichment in Parkinson’s disease 被引量:2
8
作者 Tamara Andrea Alarcón Sarah Martins Presti-Silva +2 位作者 Ana Paula Toniato Simões Fabiola Mara Ribeiro Rita Gomes Wanderley Pires 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1450-1456,共7页
Parkinson’s disease is the most common movement disorder,affecting about 1%of the population over the age of 60 years.Parkinson’s disease is characterized clinically by resting tremor,bradykinesia,rigidity and postu... Parkinson’s disease is the most common movement disorder,affecting about 1%of the population over the age of 60 years.Parkinson’s disease is characterized clinically by resting tremor,bradykinesia,rigidity and postural instability,as a result of the progressive loss of nigrostriatal dopaminergic neurons.In addition to this neuronal cell loss,Parkinson’s disease is characterized by the accumulation of intracellular protein aggregates,Lewy bodies and Lewy neurites,composed primarily of the proteinα-synuclein.Although it was first described almost 200 years ago,there are no disease-modifying drugs to treat patients with Parkinson’s disease.In addition to conventional therapies,non-pharmacological treatment strategies are under investigation in patients and animal models of neurodegenerative disorders.Among such strategies,environmental enrichment,comprising physical exercise,cognitive stimulus,and social interactions,has been assessed in preclinical models of Parkinson’s disease.Environmental enrichment can cause structural and functional changes in the brain and promote neurogenesis and dendritic growth by modifying gene expression,enhancing the expression of neurotrophic factors and modulating neurotransmission.In this review article,we focus on the current knowledge about the molecular mechanisms underlying environmental enrichment neuroprotection in Parkinson’s disease,highlighting its influence on the dopaminergic,cholinergic,glutamatergic and GABAergic systems,as well as the involvement of neurotrophic factors.We describe experimental pre-clinical data showing how environmental enrichment can act as a modulator in a neurochemical and behavioral context in different animal models of Parkinson’s disease,highlighting the potential of environmental enrichment as an additional strategy in the management and prevention of this complex disease. 展开更多
关键词 ACETYLCHOLINE brain-derived neurotrophic factor DOPAMINE environment enrichment gamma-aminobutyric acid glial cell line-derived neurotrophic factor GLUTAMATE molecular mechanisms Parkinson’s disease
下载PDF
Blunt dopamine transmission due to decreased GDNF in the PFC evokes cognitive impairment in Parkinson’s disease 被引量:1
9
作者 Chuan-Xi Tang Jing Chen +14 位作者 Kai-Quan Shao Ye-Hao Liu Xiao-Yu Zhou Cheng-Cheng Ma Meng-Ting Liu Ming-Yu Shi Piniel Alphayo Kambey Wei Wang Abiola Abdulrahman Ayanlaja Yi-Fang Liu Wei Xu Gang Chen Jiao Wu Xue Li Dian-Shuai Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1107-1117,共11页
Studies have found that the absence of glial cell line-derived neurotrophic factor may be the primary risk factor for Parkinson’s disease. However, there have not been any studies conducted on the potential relations... Studies have found that the absence of glial cell line-derived neurotrophic factor may be the primary risk factor for Parkinson’s disease. However, there have not been any studies conducted on the potential relationship between glial cell line-derived neurotrophic factor and cognitive performance in Parkinson’s disease. We first performed a retrospective case-control study at the Affiliated Hospital of Xuzhou Medical University between September 2018 and January 2020 and found that a decreased serum level of glial cell line-derived neurotrophic factor was a risk factor for cognitive disorders in patients with Parkinson’s disease. We then established a mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and analyzed the potential relationships among glial cell line-derived neurotrophic factor in the prefrontal cortex, dopamine transmission, and cognitive function. Our results showed that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex weakened dopamine release and transmission by upregulating the presynaptic membrane expression of the dopamine transporter, which led to the loss and primitivization of dendritic spines of pyramidal neurons and cognitive impairment. In addition, magnetic resonance imaging data showed that the long-term lack of glial cell line-derived neurotrophic factor reduced the connectivity between the prefrontal cortex and other brain regions, and exogenous glial cell line-derived neurotrophic factor significantly improved this connectivity. These findings suggested that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex leads to neuroplastic degeneration at the level of synaptic connections and circuits, which results in cognitive impairment in patients with Parkinson’s disease. 展开更多
关键词 cognitive impairment degree centrality dendritic spine dopamine transmission dopamine transporter glial cell line-derived neurotrophic factor Parkinson’s disease prefrontal cortex synaptic plasticity
下载PDF
Regenerative peripheral nerve interface prevents neuroma formation after peripheral nerve transection
10
作者 Zheng Wang Xin-Zeyu Yi Ai-Xi Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期814-818,共5页
Neuroma formation after peripheral nerve transection often leads to severe neuropathic pain.Regenerative peripheral nerve interface has been shown to reduce painful neuroma in the clinic.However,no reports have invest... Neuroma formation after peripheral nerve transection often leads to severe neuropathic pain.Regenerative peripheral nerve interface has been shown to reduce painful neuroma in the clinic.However,no reports have investigated the underlying mechanisms,and no comparative animal studies on regenerative peripheral nerve interface and other means of neuroma prevention have been conducted to date.In this study,we established a rat model of left sciatic nerve transfection,and subsequently interfered with the model using the regenerative peripheral nerve interface or proximal nerve stump implantation inside a fully innervated muscle.Results showed that,compared with rats subjected to nerve stump implantation inside the muscle,rats subjected to regenerative peripheral nerve interface intervention showed greater inhibition of the proliferation of collagenous fibers and irregular regenerated axons,lower expressions of the fibrosis markerα-smooth muscle actin and the inflammatory marker sigma-1 receptor in the proximal nerve stump,lower autophagy behaviors,lower expressions of c-fos and substance P,higher expression of glial cell line-derived neurotrophic factor in the ipsilateral dorsal root ganglia.These findings suggested that regenerative peripheral nerve interface inhibits peripheral nerve injury-induced neuroma formation and neuropathic pain possibly via the upregulation of the expression of glial cell line-derived neurotrophic factor in the dorsal root ganglia and reducing neuroinflammation in the nerve stump. 展开更多
关键词 AUTOTOMY dorsal root ganglia glial cell line-derived neurotrophic factor nerve injury neuropathic pain peripheral nerve regeneration regenerative peripheral nerve interface retrograde axonal transport traumatic neuroma
下载PDF
GDNF to the rescue:GDNF delivery effects on motor neurons and nerves,and muscle re-innervation after peripheral nerve injuries 被引量:5
11
作者 Alberto F.Cintrón-Colón Gabriel Almeida-Alves +1 位作者 Juliana M.VanGyseghem John M.Spitsbergen 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第4期748-753,共6页
Peripheral nerve injuries commonly occur due to trauma,like a traffic accident.Peripheral nerves get severed,causing motor neuron death and potential muscle atrophy.The current golden standard to treat peripheral nerv... Peripheral nerve injuries commonly occur due to trauma,like a traffic accident.Peripheral nerves get severed,causing motor neuron death and potential muscle atrophy.The current golden standard to treat peripheral nerve lesions,especially lesions with large(≥3 cm)nerve gaps,is the use of a nerve autograft or reimplantation in cases where nerve root avulsions occur.If not tended early,degeneration of motor neurons and loss of axon regeneration can occur,leading to loss of function.Although surgical procedures exist,patients often do not fully recover,and quality of life deteriorates.Peripheral nerves have limited regeneration,and it is usually mediated by Schwann cells and neurotrophic factors,like glial cell line-derived neurotrophic factor,as seen in Wallerian degeneration.Glial cell line-derived neurotrophic factor is a neurotrophic factor known to promote motor neuron survival and neurite outgrowth.Glial cell line-derived neurotrophic factor is upregulated in different forms of nerve injuries like axotomy,sciatic nerve crush,and compression,thus creating great interest to explore this protein as a potential treatment for peripheral nerve injuries.Exogenous glial cell line-derived neurotrophic factor has shown positive effects in regeneration and functional recovery when applied in experimental models of peripheral nerve injuries.In this review,we discuss the mechanism of repair provided by Schwann cells and upregulation of glial cell line-derived neurotrophic factor,the latest findings on the effects of glial cell line-derived neurotrophic factor in different types of peripheral nerve injuries,delivery systems,and complementary treatments(electrical muscle stimulation and exercise).Understanding and overcoming the challenges of proper timing and glial cell line-derived neurotrophic factor delivery is paramount to creating novel treatments to tend to peripheral nerve injuries to improve patients'quality of life. 展开更多
关键词 electrical muscle stimulation exercise glial cell line-derived neurotrophic factor glial cell line-derived neurotrophic factor delivery motor neuron nerve gap neurotrophic factor peripheral nerve injury Schwann cells skeletal muscle atrophy
下载PDF
Is activation of GDNF/RET signaling the answer for successful treatment of Parkinson's disease?A discussion of data from the culture dish to the clinic
12
作者 James A.Conway Edgar R.Kramer 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第7期1462-1467,共6页
The neurotrophic signaling of glial cell line-derived neurotrophic factor(GDNF)with its canonical receptor,the receptor tyrosine kinase RET,coupled together with the GDNF family receptor alpha 1 is important for dopam... The neurotrophic signaling of glial cell line-derived neurotrophic factor(GDNF)with its canonical receptor,the receptor tyrosine kinase RET,coupled together with the GDNF family receptor alpha 1 is important for dopaminergic neuron survival and physiology in cell culture experiments and animal models.This prompted the idea to try GDNF/RET signaling as a therapeutic approach to treat Parkinson’s disease with the hallmark of dopaminergic cell death in the substantia nigra of the midbrain.Despite several clinical trials with GDNF in Parkinson’s disease patients,which mainly focused on optimizing the GDNF delivery technique,benefits were only seen in a few patients.In general,the endpoints did not show significant improvements.This suggests that it will be helpful to learn more about the basic biology of this fascinating but complicated GDNF/RET signaling system in the dopaminergic midbrain and about recent developments in the field to facilitate its use in the clinic.Here we will refer to the latest publications and point out important open questions in the field. 展开更多
关键词 Α-SYNUCLEIN clinical trials dopaminergic neurons glial cell line-derived neurotrophic factor GFRα1 gut-brain axis Nedd4 PARKIN Parkinson’s disease RET
下载PDF
Electroacupuncture Promotes Functional Recovery after Facial Nerve Injury in Rats by Regulating Autophagy via GDNF and PI3K/m TOR Signaling Pathway
13
作者 YAO Jun-peng FENG Xiu-mei +6 位作者 WANG Lu LI Yan-qiu ZHU Zi-yue YAN Xiang-yun YANG Yu-qing LI Ying ZHANG Wei 《Chinese Journal of Integrative Medicine》 SCIE CAS CSCD 2024年第3期251-259,共9页
Objective:To explore the mechanism of electroacupuncture(EA) in promoting recovery of the facial function with the involvement of autophagy,glial cell line-derived neurotrophic factor(GDNF),and phosphatidylinositol-3-... Objective:To explore the mechanism of electroacupuncture(EA) in promoting recovery of the facial function with the involvement of autophagy,glial cell line-derived neurotrophic factor(GDNF),and phosphatidylinositol-3-kinase(PI3K)/mammalian target of rapamycin(mTOR) signaling pathway.Methods:Seventy-two male Sprague-Dawley rats were randomly allocated into the control,sham-operated,facial nerve injury(FNI),EA,EA+3-methyladenine(3-MA),and EA+GDNF antagonist groups using a random number table,with 12 rats in each group.An FNI rat model was established with facial nerve crushing method.EA intervention was conducted at Dicang(ST 4),Jiache(ST 6),Yifeng(SJ 17),and Hegu(LI 4) acupoints for 2 weeks.The Simone’s 10-Point Scale was utilized to monitor the recovery of facial function.The histopathological evaluation of facial nerves was performed using hematoxylin-eosin(HE) staining.The levels of Beclin-1,light chain 3(LC3),and P62 were detected by immunohistochemistry(IHC),immunofluorescence,and reverse transcriptionpolymerase chain reaction,respectively.Additionally,IHC was also used to detect the levels of GDNF,Rai,PI3K,and mTOR.Results:The facial functional scores were significantly increased in the EA group than the FNI group(P<0.05 or P<0.01).HE staining showed nerve axons and myelin sheaths,which were destroyed immediately after the injury,were recovered with EA treatment.The expressions of Beclin-1 and LC3 were significantly elevated and the expression of P62 was markedly reduced in FNI rats(P<0.01);however,EA treatment reversed these abnormal changes(P<0.01).Meanwhile,EA stimulation significantly increased the levels of GDNF,Rai,PI3K,and mTOR(P<0.01).After exogenous administration with autophagy inhibitor 3-MA or GDNF antagonist,the repair effect of EA on facial function was attenuated(P<0.05 or P<0.01).Conclusions:EA could promote the recovery of facial function and repair the facial nerve damages in a rat model of FNI.EA may exert this neuroreparative effect through mediating the release of GDNF,activating the PI3K/mTOR signaling pathway,and further regulating the autophagy of facial nerves. 展开更多
关键词 ELECTROACUPUNCTURE facial nerve injury AUTOPHAGY glial cell line-derived neurotrophic factor phosphatidylinositol-3-kinase/mammalian target of rapamycin Chinese medicine
原文传递
SC79 promotes efficient entry of GDNF liposomes into brain parenchyma to repair dopamine neurons through reversible regulation of tight junction proteins
14
作者 Xiaomei Wu Li Wang +6 位作者 Kai Wang Jia Ke Sufen Li Tingting Meng Hong Yuan Qirui Zhang Fuqiang Hu 《Nano Research》 SCIE EI CSCD 2023年第2期2695-2705,共11页
Glial cell line-derived neurotrophic factor(GDNF),a disease-modifying drug for Parkinson’s disease(PD)is in Phase 2 clinical trials(EudraCT number:2011-003866-34),however it is administered by direct intrastriatal de... Glial cell line-derived neurotrophic factor(GDNF),a disease-modifying drug for Parkinson’s disease(PD)is in Phase 2 clinical trials(EudraCT number:2011-003866-34),however it is administered by direct intrastriatal delivery via stereotaxy,which is accompanied with intracranial infection,brain tissue damage,and other complications.In addition,because of complex administration routes,clinical trials of GDNF have yielded contrary results,largely due to differences in dose and concentration brought by intracranial device.Herein,a small molecular agonist SC79 was screened to open blood-brain barrier(BBB)and promote GDNF liposomes to get into brain.SC79 reversibly reduces the expression of claudin-5,one of dominant tight junctions of BBB.Animal study showed SC79 promoted liposomes to enter into brain parenchyma 2.43 times more than that of the control.Motor deficits of PD mice receiving SC79 and brain-targeted GDNF liposomes were recovered by 36.70%and tyrosine hydroxylase positive neurons in striatum were restored by 39.90%.Our combination therapy effectively avoids the side effects such as secondary infection and uneven delivery caused by intracranial injection,improving patients’compliance and providing valuable research ideas for the clinic. 展开更多
关键词 blood-brain barrier brain delivery facilitation tight junction glial cell line-derived neurotrophic factor disease-modifying Parkinson’s disease
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部