According to requirements of the bank-to-turn (BTT) control for a small diameter bomb (SDB), the robust design problem for the roll autopilot was studied by H∞-mixed sensitivity control method. A roll channel dynamic...According to requirements of the bank-to-turn (BTT) control for a small diameter bomb (SDB), the robust design problem for the roll autopilot was studied by H∞-mixed sensitivity control method. A roll channel dynamics model was established. Considering the couple between the yaw and roll channel as uncertain disturbance, the roll autopilot was designed using dual-loop scheme which takes a linear quadratic regulator (LQR) as inner-loop, to ensure the control effect of the certain part in model, and an H∞-mixed sensitivity control as outer-loop, to restrain coupling disturbance and strengthen the system's robust performance. The dynamic tracking performance and the robustness for the parameter disturbance of the roll controller were analyzed. The simulated results show that the roll control system functions better and robustly.展开更多
Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems wit...Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems with varying time delays. The time delay is assumed bounded and the upper bound is known. In the technique we propose, the delay affecting the plant to be controlled is treated as an unmodeled uncertainty(in form of multiplicative uncertainty). That uncertainty is approximated and then an H∞based controller, for the plant represented by the multiplicative uncertainty and the nominal model, is calculated. The obtained H∞controller is used to control the LTI systems with varying time delays. Simulation examples are given to illustrate the effectiveness of the proposed method.展开更多
In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis meth...In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis method and the springback/section deformation prediction finite element model, and by using this model the sensitivities of the springback and the section deformation to process parameters were analyzed and compared. The results show that the most sensitive process conditions for springback angle are the boost speed and the pressure of pressure die, and the most sensitive process condition for section deformation is the number of cores. When the clamp force, the boost speed and the pressure of pressure die are utilized to control section deformation, the effect of these process parameters on springback should be considered. When the process parameters are mainly used to control springback, the effect of these process parameters on the section deformation should be always considered.展开更多
Climate change will have important implications in water shore regions,such as Huang-Huai-Hai(3H) plain,where expected warmer and drier conditions might augment crop water demand.Sensitivity analysis is important in...Climate change will have important implications in water shore regions,such as Huang-Huai-Hai(3H) plain,where expected warmer and drier conditions might augment crop water demand.Sensitivity analysis is important in understanding the relative importance of climatic variables to the variation in reference evapotranspiration(ET 0).In this study,the 51-yr ET 0 during winter wheat and summer maize growing season were calculated from a data set of daily climate variables in 40 meteorological stations.Sensitivity maps for key climate variables were estimated according to Kriging method and the spatial pattern of sensitivity coefficients for these key variables was plotted.In addition,the slopes of the linear regression lines for sensitivity coefficients were obtained.Results showed that ET 0 during winter wheat growing season accounted for the largest proportion of annual ET 0,due to its long phenological days,while ET 0 was detected to decrease significantly with the magnitude of 0.5 mm yr-1in summer maize growing season.Solar radiation is considered to be the most sensitive and primarily controlling variable for negative trend in ET 0 for summer maize season,and higher sensitive coefficient value of ET 0 to solar radiation and temperature were detected in east part and southwest part of 3H plain respectively.Relative humidity was demonstrated as the most sensitive factor for ET 0 in winter wheat growing season and declining relativity humidity also primarily controlled a negative trend in ET 0,furthermore the sensitivity coefficient to relative humidity increased from west to southeast.The eight sensitivity centrals were all found located in Shandong Province.These ET 0 along with its sensitivity maps under winter wheat-summer maize rotation system can be applied to predict the agricultural water demand and will assist water resources planning and management for this region.展开更多
We conduct a theoretical analysis of the massive and tunable Goos–Hänchen(GH) shift on a polar crystal covered with periodical black phosphorus(BP)-patches in the THz range. The surface plasmon phonon polaritons...We conduct a theoretical analysis of the massive and tunable Goos–Hänchen(GH) shift on a polar crystal covered with periodical black phosphorus(BP)-patches in the THz range. The surface plasmon phonon polaritons(SPPPs), which are coupled by the surface phonon polaritons(SPh Ps) and surface plasmon polaritons(SPPs), can greatly increase GH shifts.Based on the in-plane anisotropy of BP, two typical metasurface models are designed and investigated. An enormous GH shift of about-7565.58 λ_(0) is achieved by adjusting the physical parameters of the BP-patches. In the designed metasurface structure, the maximum sensitivity accompanying large GH shifts can reach about 6.43 × 10^(8) λ_(0)/RIU, which is extremely sensitive to the size, carrier density, and layer number of BP. Compared with a traditional surface plasmon resonance sensor, the sensitivity is increased by at least two orders of magnitude. We believe that investigating metasurface-based SPPPs sensors could lead to high-sensitivity biochemical detection applications.展开更多
The photocurrent-voltage characteristics and photoelectric sensitivity of a-Si:H samples with slit and comb electrodes are measured. A method for calculating the charge intensifying gain from the photoelectric sensiti...The photocurrent-voltage characteristics and photoelectric sensitivity of a-Si:H samples with slit and comb electrodes are measured. A method for calculating the charge intensifying gain from the photoelectric sensitivity is proposed. The obtained charge intensifying gain of a-Si:H under an electric field of 105 V/cm through this method is as high as 4.3×103. The generation process of the charge intensification effect in a-Si:H is discussed on the basis of the energy level diagram. And the product of electron’s mobility and its lifetime is calculated from the measured values of the gains.展开更多
Sensitivity analysis of composite laminated plates with bonding imperfection is carried out based on the radial point interpolation method (RPIM) in a Hamilton system. A set of hybrid governing equations of response...Sensitivity analysis of composite laminated plates with bonding imperfection is carried out based on the radial point interpolation method (RPIM) in a Hamilton system. A set of hybrid governing equations of response and sensitivity quantities is reduced using the spring-layer model and the modified Hellinger-Reissner (H-R) variational principle. The analytical method (AM), the semi-analytical method (SAM), and the finite difference method (FDM) are used for sensitivity analysis based on the reduced set of hybrid governing equations. A major advantage of the hybrid governing equations is that the convolution algorithm is avoided in sensitivity analysis. In addition, sensitivity analysis using this set of hybrid governing equations can obtain response values and sensitivity coefficients simultaneously, and accounts for bonding imperfection of composite laminated plates.展开更多
基金Sponsored by National Ministries and Commissions Research Program in Advance (102080403)
文摘According to requirements of the bank-to-turn (BTT) control for a small diameter bomb (SDB), the robust design problem for the roll autopilot was studied by H∞-mixed sensitivity control method. A roll channel dynamics model was established. Considering the couple between the yaw and roll channel as uncertain disturbance, the roll autopilot was designed using dual-loop scheme which takes a linear quadratic regulator (LQR) as inner-loop, to ensure the control effect of the certain part in model, and an H∞-mixed sensitivity control as outer-loop, to restrain coupling disturbance and strengthen the system's robust performance. The dynamic tracking performance and the robustness for the parameter disturbance of the roll controller were analyzed. The simulated results show that the roll control system functions better and robustly.
文摘Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems with varying time delays. The time delay is assumed bounded and the upper bound is known. In the technique we propose, the delay affecting the plant to be controlled is treated as an unmodeled uncertainty(in form of multiplicative uncertainty). That uncertainty is approximated and then an H∞based controller, for the plant represented by the multiplicative uncertainty and the nominal model, is calculated. The obtained H∞controller is used to control the LTI systems with varying time delays. Simulation examples are given to illustrate the effectiveness of the proposed method.
基金Project (50975235) supported by the National Natural Science Foundation of ChinaProject (B08040) supported by the 111 Project
文摘In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis method and the springback/section deformation prediction finite element model, and by using this model the sensitivities of the springback and the section deformation to process parameters were analyzed and compared. The results show that the most sensitive process conditions for springback angle are the boost speed and the pressure of pressure die, and the most sensitive process condition for section deformation is the number of cores. When the clamp force, the boost speed and the pressure of pressure die are utilized to control section deformation, the effect of these process parameters on springback should be considered. When the process parameters are mainly used to control springback, the effect of these process parameters on the section deformation should be always considered.
基金supported by the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2012BAD09B01)the National 973 Program of China(2012CB955904)the Project of Food Security and Climate Change in the Asia-Pacific Region:Evaluating Mismatch between Crop Development and Water Availability and Project of National Non-profit Institute Fund,China-Australia(BSRF201206)
文摘Climate change will have important implications in water shore regions,such as Huang-Huai-Hai(3H) plain,where expected warmer and drier conditions might augment crop water demand.Sensitivity analysis is important in understanding the relative importance of climatic variables to the variation in reference evapotranspiration(ET 0).In this study,the 51-yr ET 0 during winter wheat and summer maize growing season were calculated from a data set of daily climate variables in 40 meteorological stations.Sensitivity maps for key climate variables were estimated according to Kriging method and the spatial pattern of sensitivity coefficients for these key variables was plotted.In addition,the slopes of the linear regression lines for sensitivity coefficients were obtained.Results showed that ET 0 during winter wheat growing season accounted for the largest proportion of annual ET 0,due to its long phenological days,while ET 0 was detected to decrease significantly with the magnitude of 0.5 mm yr-1in summer maize growing season.Solar radiation is considered to be the most sensitive and primarily controlling variable for negative trend in ET 0 for summer maize season,and higher sensitive coefficient value of ET 0 to solar radiation and temperature were detected in east part and southwest part of 3H plain respectively.Relative humidity was demonstrated as the most sensitive factor for ET 0 in winter wheat growing season and declining relativity humidity also primarily controlled a negative trend in ET 0,furthermore the sensitivity coefficient to relative humidity increased from west to southeast.The eight sensitivity centrals were all found located in Shandong Province.These ET 0 along with its sensitivity maps under winter wheat-summer maize rotation system can be applied to predict the agricultural water demand and will assist water resources planning and management for this region.
基金Project supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No.LH2020A014)the Graduate Students' Research Innovation Project of Harbin Normal University (Grant No.HSDSSCX2022-47)。
文摘We conduct a theoretical analysis of the massive and tunable Goos–Hänchen(GH) shift on a polar crystal covered with periodical black phosphorus(BP)-patches in the THz range. The surface plasmon phonon polaritons(SPPPs), which are coupled by the surface phonon polaritons(SPh Ps) and surface plasmon polaritons(SPPs), can greatly increase GH shifts.Based on the in-plane anisotropy of BP, two typical metasurface models are designed and investigated. An enormous GH shift of about-7565.58 λ_(0) is achieved by adjusting the physical parameters of the BP-patches. In the designed metasurface structure, the maximum sensitivity accompanying large GH shifts can reach about 6.43 × 10^(8) λ_(0)/RIU, which is extremely sensitive to the size, carrier density, and layer number of BP. Compared with a traditional surface plasmon resonance sensor, the sensitivity is increased by at least two orders of magnitude. We believe that investigating metasurface-based SPPPs sensors could lead to high-sensitivity biochemical detection applications.
文摘The photocurrent-voltage characteristics and photoelectric sensitivity of a-Si:H samples with slit and comb electrodes are measured. A method for calculating the charge intensifying gain from the photoelectric sensitivity is proposed. The obtained charge intensifying gain of a-Si:H under an electric field of 105 V/cm through this method is as high as 4.3×103. The generation process of the charge intensification effect in a-Si:H is discussed on the basis of the energy level diagram. And the product of electron’s mobility and its lifetime is calculated from the measured values of the gains.
基金Project supported by the National Natural Science Foundation of China (No. 60979001)the Major Project of Civil Aviation University of China (No. CAUC2009ZD0101)
文摘Sensitivity analysis of composite laminated plates with bonding imperfection is carried out based on the radial point interpolation method (RPIM) in a Hamilton system. A set of hybrid governing equations of response and sensitivity quantities is reduced using the spring-layer model and the modified Hellinger-Reissner (H-R) variational principle. The analytical method (AM), the semi-analytical method (SAM), and the finite difference method (FDM) are used for sensitivity analysis based on the reduced set of hybrid governing equations. A major advantage of the hybrid governing equations is that the convolution algorithm is avoided in sensitivity analysis. In addition, sensitivity analysis using this set of hybrid governing equations can obtain response values and sensitivity coefficients simultaneously, and accounts for bonding imperfection of composite laminated plates.